
Applications of Annotated Predicate Calculus to
Querying Inconsistent Databases

Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

1 P. Universidad Catolica de Chile, Depto. Ciencia de Computacion
Casilla 306, Santiago 22, Chile

{marenas,bertossi}@ing.puc.cl
2 Department of Computer Science, University at Stony Brook

Stony Brook, NY 11794, USA
kifer@cs.sunysb.edu

Abstract. We consider the problem of specifying and computing con-
sistent answers to queries against databases that do not satisfy given
integrity constraints. This is done by simultaneously embedding the
database and the integrity constraints, which are mutually inconsistent
in classical logic, into a theory in annotated predicate calculus — a logic
that allows non trivial reasoning in the presence of inconsistency. In this
way, several goals are achieved: (a) A logical specification of the class
of all minimal “repairs” of the original database, and the ability to rea-
son about them; (b) The ability to distinguish between consistent and
inconsistent information in the database; and (c) The development of
computational mechanisms for retrieving consistent query answers, i.e.,
answers that are not affected by the violation of the integrity constraints.

1 Introduction

Databases that violate stated integrity constraints is an (unfortunate) fact of life
for many corporations. They arise due to poor data entry control, due to merges
of previously separate databases, due to the incorporation of legacy data, and
so on. We call such databases “inconsistent.”

Even though the information stored in such a database might be logically
inconsistent (and, thus, strictly speaking, any tuple should be viewed as a cor-
rect query answer), this has not been a deterrent to the use of such databases in
practice, because application programmers have been inventing ingenious tech-
niques for salvaging “good” information. Of course, in such situations, what is
good information and what is not is in the eyes of beholder, and each concrete
case currently requires a custom solution. This situation can be compared to
the times before the advent of relational databases, when every database query
required a custom solution.

Thus, the problem is: what is the definition of “good information” in an
inconsistent database and, once this is settled, what is the meaning of a query
in this case. Several proposals to address these problems — both semantically
and computationally — are known (e.g., [1]), and we are not going to propose

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 926–941, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Applications of Annotated Predicate Calculus 927

yet another definition for consistent query answers. Instead, we introduce a new
semantic framework, based on Annotated Predicate Calculus [9], that leads to a
different computational solution and provides a basis for a systematic study of
the problem.

Ultimately, our framework leads to the query semantics proposed in [1]. Ac-
cording to [1], a tuple t̄ is an answer to the query Q(x̄) in a possibly inconsistent
database instance r, ifQ(t̄) holds true in all the “repairs” of the original database,
that is in all the databases that satisfy the given constraints and can be obtained
from r by means of a “minimal” set of changes (where minimality is measured
in terms of a smallest symmetric set difference).

In [1], an algorithm is proposed whereby the original query is modified using
the set of integrity constraints (that are violated by the database). The modified
query is then posed against the original database (with the integrity constraints
ignored). In this way, the explicit integrity checking and computation of all
database repairs is avoided.

In this paper, we take a more direct approach. First, since the database is
inconsistent with the constraints, it seems natural to embed it into a logic that
is better suited for dealing with inconsistency than classical logic. In this paper
we use Annotated Predicate Calculus (abbr. APC) introduced in [9]. APC is a
form of “paraconsistent logic,” i.e., logic where inconsistent information does
not unravel logical inference and where causes of inconsistency can be reasoned
about. APC generalizes a number of earlier proposals [12,11,3] and its various
partial generalizations have also been studied in different contexts (e.g., [10]).

The gist of our approach is to embed an inconsistent database theory in
APC and then use APC to define database repairs and query answers. This
helps understand the results of [1], leads to a more straightforward complexity
analysis, and provides a more general algorithm that covers classes of queries
not included in [1]. Furthermore, by varying the semi-lattice underlying the host
APC theory, it is possible to control how exactly inconsistency is resolved in the
original database.

Section 2 formalizes the problem of querying inconsistent databases. Section 3
reviews the basic definitions of Annotated Predicate Calculus, and Section 4 ap-
plies this calculus to our problem. In Section 5, we provide a syntactic character-
ization for database repairs and discuss the associated computational process.
Section 6 studies the problem of query evaluation in inconsistent databases and
Section 7 concludes the paper.

2 Preliminaries

We assume we have a fixed database schema P = {p1, . . . , pn}, where p1, ..., pn

are predicates corresponding to the database relations; a fixed, possibly infinite
database domain D = {c1, c2, ...}; and a fixed set of built-in predicates B =
{e1, . . . , em}. Each predicate has arity, i.e., the number of arguments it takes.
An integrity constraint is a closed first-order formula in the language defined by

928 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

the above components. We also assume a first order language L = D ∪ P ∪ B
that is based on this schema.

Definition 1. (Databases and Constraints) A database instance DB is a fi-
nite collection of facts, i.e., of statements of the form p(c1, ..., cn), where p is a
predicate in P and c1, ..., cn are constants in D.

An integrity constraint is a clause of the form

p1(T̄1) ∨ · · · ∨ pn(T̄n) ∨ ¬q1(S̄1) ∨ · · · ∨ ¬qm(S̄m)

where each pi (1 ≤ i ≤ n) and qj (q ≤ j ≤ m) is a predicate in P ∪ B and
T̄1, ..., T̄n, S̄1, ..., S̄m are tuples (of appropriate arities) of constants or variables.
As usual, we assume that all variables in a clause are universally quantified, so
the quantifiers are omitted.

Throughout this paper we assume that both the database instance DB and
the set of integrity constraints IC are consistent when considered in isolation.
However, together DB ∪ IC might not be consistent.

Definition 2. (Sentence Satisfaction) We use |=DB to denote the usual notion
of formula satisfaction in a database. The subscript DB is used to distinguish
this relation from other types of implication used in this paper. In other words,

– DB |=DB p(c̄), where p ∈ P , iff p(c̄) ∈ DB;
– DB |=DB q(c̄), where q ∈ B, iff q(c̄) is true;
– DB |=DB ¬ϕ iff it is not true that DB |=DB ϕ;
– DB |=DB φ ∧ ψ iff DB |=DB φ and DB |=DB ψ;
– DB |=DB (∀X)φ(X) iff for all d ∈ D, DB |=DB φ(d);

and so on. Notice that the domain is fixed, and it is involved in the above defi-
nition.

Definition 3. (IC Satisfaction) A database instance DB satisfies a set of in-
tegrity constraints IC iff for every ϕ ∈ IC, DB |=DB ϕ.

If DB does not satisfy IC, we say that DB is inconsistent with IC. Addi-
tionally, we say that a set of integrity constraints is consistent if there exists a
database instance that satisfies it.

Next we recall the relevant definitions from [1].
Given two database instances DB1 and DB2, the distance ∆(DB1,DB2)

between them is their symmetric difference: ∆(DB1,DB2) = (DB1 −DB2) ∪
(DB2 −DB1). This leads to the following partial order:

DB1 ≤DB DB2 iff ∆(DB,DB1) ⊆ ∆(DB,DB2).

That is, ≤DB determines the “closeness” to DB. The notion of closeness forms
the basis for the concept of a repair of an inconsistent database.

Applications of Annotated Predicate Calculus 929

Definition 4. (Repair) Given database instances DB and DB′, we say that
DB′ is a repair of DB with respect to a set of integrity constraints IC iff DB′

satisfies IC and DB′ is ≤DB-minimal in the class of database instances that
satisfy IC.

Clearly if DB is consistent with IC, then DB is its own repair. Concepts
similar to database repair were proposed in the context of database maintenance
and belief revision [7,4].

Example 1. (Repairing a Database) Consider a database schema with two unary
relations p and q and domainD = {a, b, c, . . .}. Let DB = {p(a), p(b), q(a), q(c)}
be a database instance over the domain D and let IC = {¬p(x)∨ q(x)} be a set
of constraints. This database does not satisfy IC because ¬p(b) ∨ q(b) is false.

Two repairs are possible. First, we can make p(b) false, obtaining DB′ =
{p(a), q(a), q(c)}. Alternatively, we can make q(b) true, obtaining
DB′′ = {p(a), p(b), q(a), q(b), q(c)}.

Definition 5. (Consistent Answers) Let DB be a database instance, IC be set
of integrity constraints and Q(x̄) be a query. We say that a tuple of constants
t̄ is a consistent answer to the query, denoted DB |=c Q(t̄), if for every repair
DB′ of DB, DB′ |=DB Q(t̄).

If Q is a closed formula, then true (respectively, false) is a consistent answer
to Q, denoted DB |=c Q, if DB′ |=DB Q (respectively, DB′ 6|=DB Q) for every
repair DB′ of DB.

3 Annotated Predicate Calculus

Annotated predicate calculus (abbr. APC) [9] is a generalization of annotated
logic programs introduced by Blair and Subrahmanian [3]. It was introduced
in order to study the problem of “causes of inconsistency” in classical logical
theories, which is closely related to the problem of consistent query answers
being addressed in our present work. This section briefly surveys the basics of
APC used in this paper.

The syntax and the semantics of APC is based on classical logic, except
that the classical atomic formulas are annotated with values drawn from a belief
semilattice (abbr. BSL) — an upper semilattice1 with the following properties:

(i) BSL contains at least the following four distinguished elements: t (true), f
(false), > (contradiction), and ⊥ (unknown);

(ii) For every s ∈ BSL, ⊥ ≤ s ≤ > (≤ is the semilattice ordering);
(iii) lub(t, f) = >, where lub denotes the least upper bound.

As usual in the lattice theory, lub imposes a partial order on BSL: a ≤ b iff
b = lub(a, b) and a < b iff a ≤ b and a is different from b. Two typical examples
of BSL (which happen to be complete lattices) are shown in Figure 1. In both

930 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

Lattice with Defaults [8]4-valued Lattice [2,3]

dtdf

d> tf

>

⊥⊥

>

tf

Fig. 1. Typical Belief Semilattices

of them, the lattice elements are ordered upwards. The specific BSL used in this
paper is introduced later, in Figure 2.

Thus, the only syntactic difference between APC and classical predicate logic
is that the atomic formulas of APC are constructed from the classical atomic
formulas by attaching annotation suffixes. For instance, if s, t, > are elements of
the belief semilattice, then p(X) : s, q : >, and r(X, Y, Z) : t all are atomic
formulas in APC.

We define only the Herbrand semantics of APC (this is all we need here),
and we also assume that the language is free of function symbols (because we
are dealing with relational databases in this paper). We thus assume that the
Herbrand universe is D, the set of all domain constants, and the Herbrand base,
HB, is the set of all ground (i.e., variable-free) atomic formulas of APC.

A Herbrand interpretation is any downward-closed subset of HB, where a set
I ⊆ HB is said to be downward-closed iff p : s ∈ I implies that p : s′ ∈ I for every
s′ ∈ BSL such that s′ ≤ s. Formula satisfaction can then be defined as follows,
where ν is a variable assignment that gives a value in D to every variable:

– I |=v p : s, where s ∈ BSL and p is a classical atomic formula, if and only
if p : s ∈ I.

– I |=v φ ∧ ψ if and only if I |=v φ and I |=v ψ;
– I |=v ¬ψ if and only if not I |=v ψ;
– I |=v (∀X)ψ(X) if and only if I |=u ψ, for every u that may differ from v

only in its X-value.

It is thus easy to see that the definition of |= looks very much classical. The
only difference (which happens to have significant implications) is the syntax
of atomic formulas and the requirement that Herbrand interpretations must be
downward-closed. The implication a← b is also defined classically, as a ∨ ¬b.

It turns out that whether or not APC has a complete proof theory depends
on which semilattice is used. It is shown in [9] that for a very large and natural
class of semilattices (which includes all finite semilattices), APC has a sound
and complete proof theory.
1 That is, the least upper bound, lub(a, b), is defined for every pair of elements

a, b ∈ BSL.

Applications of Annotated Predicate Calculus 931

The reason why APC is useful in analyzing inconsistent logical theories is
because classical theories can be embedded in APC in various ways. The most
useful types of embeddings are those where theories that are inconsistent in clas-
sical logic become consistent in APC. It then becomes possible to reason about
the embedded theories and gain insight into the original inconsistent theory.

The two embeddings defined in [9] are called epistemic and ontological. Under
the epistemic embedding, a (classically inconsistent) set of formulas such as
S = {p(1), ¬p(1), q(2)} is embedded in APC as Se = {p(1) : t, p(1) : f , q(2) : t}
and under the ontological embedding it is embedded as So = {p(1) : t, ¬p(1) :
t, q(2) : t}.2 In the second case, the embedded theory is still inconsistent in
APC, but in the first case it does have a model: the downward closure of {p(1) :
>, q(2) : t}. In this model, p(1) is annotated with >, which signifies that its
truth value is “inconsistent.” In contrast, the truth value of q(2) is t. More
precisely, while both q(2) and ¬q(2) follow from S in classical logic, because S
is inconsistent, only q(2) : t (but not q(2) : f !) is implied by Se. Thus, q(2)
can be seen as a consistent answer to the query ?− q(X) with respect to the
inconsistent database S.

In [9], epistemic embedding has been shown to be a suitable tool for analyzing
inconsistent classical theories. However, this embedding does not adequately
capture the inherent lack of symmetry present in our setting, where inconsistency
arises due to the incompatibility of two distinct sets of formulas (the database
and the constraints) and only one of these sets (the database) is allowed to
change to restore consistency. To deal with this problem, we develop a new type
of embedding into APC. It uses a 10-valued lattice depicted in Figure 2, and is
akin to the epistemic embedding of [9], but it also has certain features of the
ontological embedding.

The above simple examples illustrate one important property of APC: a set
of formulas, S, might be ontologically consistent in the sense that it might have
a model, but it might be epistemically inconsistent (abbr. e-inconsistent) in the
sense that S |= p : > for some p, i.e., S contains at least one inconsistent fact.
Moreover, S can be e-consistent (i.e., it might not imply p : > for any p), but
each of its models in APC might contain an inconsistent fact nonetheless (this
fact must then be different in each model, if S is e-consistent).

It was demonstrated in [9] that ordering models of APC theories according to
the amount of inconsistency they contain can be useful for studying the problem
of recovering from inconsistency. To illustrate this order, consider S = {p : t, p :
f ∨ q : t, p : f ∨ q : f} and some of its models:

M1, where p : > and q : > are true;
M2, where p : > and q : ⊥ are true;
M3, where p : t and q : > are true.

Among these models, bothM2 and M3 contain strictly less inconsistent infor-
mation thanM1 does. In addition,M2 andM3 contain incomparable amounts

2 ¬p : v is to be always read as ¬(p : v).

932 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

of information, and they are both “minimal” with respect to the amount of
inconsistent information that they have. This leads to the following definition.

Definition 6. (E-Consistency Order) Given ∆ j BSL, a semantic struc-
ture I1 is more (or equally) e-consistent than I2 with respect to ∆ (denoted
I2 ≤∆ I1) if and only if for every atom p(t1, . . . , tk) and λ ∈ ∆, whenever
I1 |= p(t1, . . . , tk) : λ then also I2 |= p(t1, . . . , tk) : λ.

I is most e-consistent in a class of semantic structures with respect to ∆, if
no semantic structure in this class is strictly more e-consistent with respect to
∆ than I (i.e., for every J in the class, I ≤∆ J implies J ≤∆ I).

4 Embedding Databases in APC

One way to find reliable answers to a query over an inconsistent database is to
find an algorithm that implements the definition of consistent answers. While
this approach has been successfully used in [1], it is desirable to see it as part
of a bigger picture, because consistent query answers were defined at the meta-
level, without an independent logical justification. A more general framework
might (and does, as we shall see) help study the problem both semantically and
algorithmically.

Our new approach is to embed inconsistent databases into APC and study
the ways to eliminate inconsistency there. A similar problem was considered in
[9] and we are going to adapt some key ideas from that work. In particular,
we will define an embedding, T , such that the repairs of the original database
are precisely the models (in the APC sense) of the embedded database. This
embedding is described below.

First, we define a special 10-valued lattice, Ldb, which defines the truth values
appropriate for our problem. The lattice is shown in Figure 2. The values ⊥, >,
t and f signify undefinedness, inconsistency, truth, and falsehood, as usual. The
other six truth values are explained below.

Informally, values tc and fc signify the truth values as they should be for the
purpose of constraint satisfaction. The values td and fd are the truth values as
they should be according to the database DB. Finally, ta and fa are the advisory
truth values. Advisory truth values are intended as keepers of the information
that helps resolve conflicts between constraints and the database.

Notice that lub(fd, tc) is ta and lub(td, fc) is fa. This means that in case of
a conflict between the constraints and the database the advise is to change the
truth value of the corresponding fact to the one prescribed by the constraints.
Intuitively, the facts that are assigned the advisory truth values are the ones that
are to be removed or added to the database in order to satisfy the constraints.
The gist of our approach is in finding an embedding of DB and IC into APC
to take advantage of the above truth values.

Embedding the ICs. Given a set of integrity constraints IC, we define a new
theory, T (IC), which contains three kinds of formulas:

Applications of Annotated Predicate Calculus 933

⊥

fc td fd tc

fa f t ta

>

Fig. 2. The lattice Ldb with constraints values, database values and advisory
values.

1. For every constraint in IC:

p1(T̄1) ∨ · · · ∨ pn(T̄n) ∨ ¬q1(S̄1) ∨ · · · ∨ ¬qm(S̄m),

T (IC) has the following formula:

p1(T̄1) : tc ∨ · · · ∨ pn(T̄n) : tc ∨ q1(S̄1) : fc ∨ · · · ∨ qm(S̄m) : fc.

In other words, positive literals are embedded using the “constraint-true”
truth value, tc, and negative literals are embedded using the “constraint-
false” truth value fc.

2. For every predicate symbol p ∈ P , the following formulas are in T (IC):

p(x̄) : tc ∨ p(x̄) : fc, ¬ p(x̄) : tc ∨ ¬ p(x̄) : fc.

Intuitively, this says that every embedded literal must be either constraint-
true or constraint-false (and not both).

Embedding Database Facts. T (DB), the embedding of the database facts into
APC is defined as follows:

1. For every fact p(ā), where p ∈ P : if p(ā) ∈ DB, then p(ā) : td ∈ T (DB); if
p(ā) 6∈ DB, then p(ā) : fd ∈ T (DB).

Embedding Built-In Predicates. T (B), the result of embedding of the built-in
predicates into APC is defined as follows:

1. For every built-in fact p(ā), where p ∈ B, the fact p(ā) : t is in T (B) iff p(ā)
is true. Otherwise, if p(ā) is false then p(ā) : f ∈ T (B).

934 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

2. ¬ p(x̄) : > ∈ T (B), for every built-in p ∈ B.

The former rule simply says that built-in facts (like 1=1) that are true in classical
sense must have the truth value t and the false built-in facts (e.g., 2=3) must
have the truth value f. The second rule states that built-in facts cannot be both
true and false. This ensures that theories for built-in predicates are embedded
in 2-valued fashion: every built-in fact in T (B) is annotated with either t or f,
but not both.

Example 2. (Embedding, I) Consider the database DB = {p(a), p(b), q(a)} over
the domain D = {a, b} and let IC be {¬p(x)∨ q(x)}. Then

T (DB) = {p(a) : td, p(b) : td, q(a) : td, q(b) : fd}

and T (IC) consists of:

p(x) : fc ∨ q(x) : tc,
p(x) : tc ∨ p(x) : fc, ¬ p(x) : tc ∨ ¬ p(x) : fc,
q(x) : tc ∨ q(x) : fc, ¬ q(x) : tc ∨ ¬ q(x) : fc

Example 3. (Embedding, II) Let DB = {p(a, a), p(a, b), p(b, a)}, D = {a, b},
and let IC be {¬p(x, y)∨¬p(x, z)∨ y = z}. It is easy to see that this constraint
represents the functional dependency p.1 → p.2. Since this constraint involves
the built-in “=”, the rules for embedding the built-ins apply.

In this case, T (DB) = {p(a, a) : td, p(a, b) : td, p(b, a) : td, p(b, b) : fd}
and T (IC) is:

p(x, y) : fc ∨ p(x, z) : fc ∨ y = z : tc,
p(x, y) : tc ∨ p(x, y) : fc, ¬ p(x, y) : tc ∨ ¬ p(x, y) : fc.

The embedded theory T (B) for the built-in predicate “=” is: (a = a) : t, (b =
b) : t, (a = b) : f , (b = a) : f , ¬ (x = y) : >. 2

Finally, we define T (DB, IC) as T (DB)∪T (IC)∪ T (B). We can now state
the following properties that confirm our intuition about the intended meanings
of the truth values in Ldb.

Lemma 1. If M is a model of T (DB, IC), then for every predicate p ∈ P and
a fact p(ā), the following is true:

1. M |= ¬ p(ā) : >.
2. M |= p(ā) : t ∨ p(ā) : f ∨ p(ā) : ta ∨ p(ā) : fa. 2

The first part of the lemma says that even if the initial database DB is inconsis-
tent with constraints IC, every model of our embedded theory is epistemically
consistent in the sense of [9], i.e., no fact of the form p(ā) : > is true in any
such model.3 The second part says that any fact is either true, or false, or it has
3 Note that an APC theory can entail p(ā) : > and be consistent in the sense that

it can have a model. However, such a model must contain p(ā) : >, which makes it
epistemically inconsistent.

Applications of Annotated Predicate Calculus 935

an advisory value of true or false. This indicates that database repairs can be
constructed out of these embeddings by converting the advisory truth values to
the corresponding values t and f. This idea is explored next.

Given a pair of database instances DB1 and DB2 over the same domain, we
construct the Herbrand structure M(DB1,DB2) = 〈D, IP , IB〉, where D is the
domain of the database and IP , IB are the interpretations for the predicates and
the built-ins, respectively. IP is defined as follows:

IP (p(ā)) =




t p(ā) ∈ DB1, p(ā) ∈ DB2

f p(ā) 6∈ DB1, p(ā) 6∈ DB2

fa p(ā) ∈ DB1, p(ā) 6∈ DB2

ta p(ā) 6∈ DB1, p(ā) ∈ DB2

(1)

The interpretation IB is defined as expected: if q is a built-in, then IP (q(ā)) = t
iff q(ā) is true in classical logic, and IP (q(ā)) = f iff q(ā) is false.

Notice that M(DB1,DB2) is not symmetric. The intent is to use these
structures as the basis for construction of database repairs. In fact, when DB1

is inconsistent and DB2 is a repair, IP shows how the advisory truth values are
to be changed to obtain a repair.

Lemma 2. Given two database instances DB and DB′, if DB′ |=DB IC, then
M(DB,DB′) |= T (DB, IC). 2

The implication of this lemma is that whenever IC is consistent, then the
theory T (DB, IC) is also consistent in APC. Since in this paper we are always
dealing with consistent sets of integrity constraints, we conclude that T (DB, IC)
is always a consistent APC theory.

We will now show how to generate repairs out of the models of T (DB, IC).
Given a model M of T (DB, IC), we define DBM as:

{p(ā) | p ∈ P and M |= p(ā) : t ∨ p(ā) : ta}. (2)

Note that DBM can be an infinite set of facts (but finite when M corresponds
to a database instance).

Lemma 3. If M is a model of T (DB, IC) such that DBM is finite, then
DBM |=DB IC.

Proposition 1. Let M be a model of T (DB, IC). If M is most e-consistent
with respect to ∆ = {ta, fa,>} (see Definition 6) among the models of T (DB, IC)
and DBM is finite, then DBM is a repair of DB with respect to IC.

Proposition 2. If DB′ is a repair of DB with respect to the set of integrity
constraints IC, then M(DB,DB′) is most e-consistent with respect to ∆ =
{ta, fa,>} among the models of T (DB, IC).

936 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

Example 4. (Repairs as Most e-Consistent Models) Consider a database in-
stance DB = {p(a)} over the domain D = {a} and a set of integrity constraints
IC = {¬p(x) ∨ q(x), ¬q(x) ∨ r(x)}. In this case T (DB) = {p(a) : td, q(a) :
fd, r(a) : fd}, and T (IC) is

p(x) : fc ∨ q(x) : tc, q(x) : fc ∨ r(x) : tc,
p(x) : tc ∨ p(x) : fc, ¬p(x) : tc ∨ ¬p(x) : fc,
q(x) : tc ∨ q(x) : fc, ¬q(x) : tc ∨ ¬q(x) : fc,
r(x) : tc ∨ r(x) : fc, ¬r(x) : tc ∨ ¬r(x) : fc

This theory has four models, depicted in the following table:

p(a) q(a) r(a)
M1 t ta ta
M2 fa f f
M3 fa f ta
M4 fa ta ta

It is easy to verify that M1 and M2 are the most e-consistent models with
respect to ∆ = {ta, fa,>} among the models in the table and the database
instance DBM1 = {p(a), q(a), r(a)} and DBM2 = ∅ are exactly the repairs of
DB with respect to IC.

Example 5. (Example 3 Continued) The embedding of the database described
in Example 3 has nine models listed in the following table. The table omits the
built-in “=”, since it has the same interpretation in all models.

p(a, a) p(a, b) p(b, a) p(b, b)
M1 t fa t f
M2 t fa fa f
M3 t fa fa ta
M4 fa t t f
M5 fa t fa f
M6 fa t fa ta
M7 fa fa t f
M8 fa fa fa f
M9 fa fa fa ta

It is easy to see thatM1 andM4 are the most e-consistent models with respect
to ∆ = {ta, fa,>} among the models in the table, and the database instances
DBM1 = {p(a, a), p(b, a)}, and DBM4 = {p(a, b), p(b, a)} are exactly the
repairs of DB with respect to IC.

5 Repairing Inconsistent Databases

To construct all possible repairs of a database, DB, that is inconsistent with the
integrity constraints IC, we need to find the set of all ground clauses of the form

p1 : ?a ∨ · · · ∨ pn : ?a, (3)

Applications of Annotated Predicate Calculus 937

that are implied by T (DB, IC), where each ?a is either ta or fa. Such clauses
are called a-clauses, for advisory clauses.4

A-clauses are important because one of the disjuncts of such a clause must
be true in each model of T (DB, IC). Suppose that, say, p : ?a is true in some
model I. This means that the truth value of p with respect to the database is
exactly the opposite of what is required in order for I to satisfy the constraints.
This observation can be used to construct a repair of the database by reversing
the truth value of p with respect to the database. We explore this idea next.

Constructing Database Repairs. Let T a(DB, IC) be the set of all minimal a-
clauses that are implied by T (DB, IC). “Minimal” here means that no disjunct
can be removed from any clause in T a(DB, IC) and still have the clause implied
by T (DB, IC).

In general, this can be an infinite set, but in most practical cases this set
is finite. Conditions for finiteness of T a(DB, IC) are given in Section 5.1. If
T a(DB, IC) is finite, it can be represented as the following set of clauses:

C1 = p1,1 : a1,1 ∨ · · · ∨ p1,n1 : a1,n1

.
Ck = pk,1 : ak,1 ∨ · · · ∨ pk,nk : ak,nk

Here, the pi,j : ai,j are ground positive literals and their annotations, ai,j, are
always of the form ta or fa.

It can be shown that all a-clauses can be generated using the APC resolution
inference rule [9] between T (IC), T (DB), and T (B). It can be also shown that all
a-clauses generated in this way are ground and do not contain built-in predicates.

Given T a(DB, IC) as above, a repair signature is a set of APC literals that
contains at least one literal from each clause Ci and is minimal in the sense that
no proper subset has a literal from each Ci. In other words, a repair signature
is a minimal hitting set of the family of clauses C1, . . . , Ck [6].

Notice that if the clauses Ci do not share literals, then each repair signature
contains exactly k literals and every literal appearing in a clause Ci belongs to
some repair signature.

It follows from the construction of repairs in (2) and from Propositions 1 and
2 that there is a one to one correspondence between repair signatures and repairs
of the original database instance DB. Given a repair signature Repair, a repair
DB′ can be obtained from DB by removing the tuples p(t̄), if p(t̄) : fa ∈ Repair,
and inserting the tuples p(t̄), if p(t̄) : ta ∈ Repair. It can be shown that it is not
possible for any fact, p, to occur in T a(DB, IC) with two different annotations.
Therefore, it is not possible that the same fact will be inserted and then removed
(or vice versa) while constructing a repair as described here.

4 Here, bold face symbols, e.g., p, denote classical ground atomic formulas.

938 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

5.1 Finiteness of T a(DB, IC)

We now examine the issue of finiteness of the set T a(DB, IC).

Definition 7. (Range-Restricted Constraints) An integrity constraint, p1(T̄1)∨
· · · ∨ pn(T̄n) ∨ ¬q1(T̄ ′

1) ∨ · · · ∨ ¬qm(T̄ ′
m), is range-restricted if and only if every

variable in T̄i (1 ≤ i ≤ n) also occurs in some T̄ ′
j (1 ≤ j ≤ m). Both pi and qj

can be built-in predicates.
A set IC of constraints is range-restricted if so is every constraint in IC.

Lemma 4. Let IC be a set of range-restricted constraints over a database DB.
Then every a-clause implied by T (DB, IC) (i.e., every clause of the form (3))
mentions only the constants in the active domain of DB.5

Corollary 1. If IC is range-restricted, then T a(DB, IC) is finite.

6 Queries to Inconsistent Databases

In general, the number of all repair signatures can be exponential in the size
of T a(DB, IC), so using this theory directly is not likely to produce a good
query engine. In fact, for the propositional case, [5] shows that the problem of
deciding whether a formula holds in all models produced by Winslett’s theory of
updates [4] isΠP

2 -complete. Since, as mentioned before, our repairs are essentially
Winslett’s updated models, the same result applies to our case.

However, there are cases when complexity is manageable. It is easy to see
that if k is the number of clauses in T a(DB, IC) and n1, ..., nk are the numbers
of disjuncts in C1, ..., Ck, respectively, then the number of repair signatures is
O(n1 × . . .× nk). Therefore, two factors affect the number of repairs:

1. The number of clauses in T a(DB, IC);
2. The number of disjuncts in each clause in T a(DB, IC).

So, we should look into those types of constraints where either k is bound or all
but a bound number of ni’s equal 1.

Other cases when query answering is feasible arise when the set of a-clauses
T a(DB, IC) is precomputed. Precomputing this set might be practical for read-
only databases. In other cases, T a(DB, IC) might be easy to compute because
of the special form of constraints (and in this case, the size of T a(DB, IC) turns
out to be P-bounded). For instance, suppose IC consists of range-restricted
formulas and is closed under the resolution inference rule (e.g. if IC is a set of
functional dependencies). In this case, a-clauses can be generated by converting
each constraint into a query that finds all tuples that violate the constraint. For
instance, the constraint p(x̄) ⊃ q(x̄) can be converted into the query p(x̄)∧¬q(x̄)
(which is the denial form of this constraint). If the tuple ā is an answer, then
one a-clause is p(ā) : fa ∨ q(ā) : ta.
5 The active domain consists of the constants in D that appear in some database table.

Applications of Annotated Predicate Calculus 939

Answering Ground Conjunctive Queries. To consistently answer a ground con-
junctive query of the form p1 ∧ . . . ∧ pk ∧ ¬q1 ∧ . . . ∧ ¬qm, we need to check
the following:

For each pi: if pi ∈ DB and pi : fa is not mentioned in T a(DB, IC); or if
T a(DB, IC) has a clause of the form pi : ta.

For each qj : if qj 6∈ DB and qj : ta is not mentioned in T a(DB, IC); or if
T a(DB, IC) has a clause of the form qj : fa.

If all of the above holds, true is a consistent answer to the query. Otherwise, the
answer is not true, meaning that there is at least one repair where our conjunctive
query is false. (Note that this is not the same as answering false in definition 5).

Non-ground Conjunctive Queries. Let DB have the relations p1, . . . , pn. We
construct a new database, DBO,U , with relations pO

1 , . . . , p
O
n , p

U
1 , . . . , p

U
n (where

O and U stand for “original” and “unknown”, resp.), as follows:

pO
i consists of : all the tuples such that pi(t̄) ∈ DB and pi(t̄) : fa is not men-

tioned in T a(DB, IC) plus the tuples t̄ such that p(t̄) : ta is a clause in
T a(DB, IC).

pU
j consists of : all the tuples t̄ such that pj(t̄) : ta or pj(t̄) : fa appear in a

clause in T a(DB, IC) that has more than one disjunct.

To answer an open conjunctive query, for example, p(x) ∧ ¬q(x), we pose the
query pO(x)∧¬qO(x)∧¬qU(x) to DBO,U . This can be done in polynomial time
in the database size plus the size of the set of a-clauses.

Ground Disjunctive Queries. Sound and complete query evaluation techniques
for various types of queries and constraints are developed in [1]. Our present
framework extends the results in [1] to include disjunctive queries. We concen-
trate on ground disjunctive queries of the form

p1 ∨ · · · ∨ pk ∨ ¬q1 · · ·¬qr. (4)

First, for each pi we evaluate the query pO
i and for each qj we evaluate the query

¬qO
j ∧¬qU

j against the database DBO,U . If at least one true answer is obtained,
the answer to (4) is true. Otherwise, if all these queries return false, we evaluate
the queries of the form ¬pO

i ∧¬pU
i and qO

j against DBO,U . For each answer true,
the corresponding literal is eliminated from (4). Let pi1∨· · ·∨pis∨¬qj1 · · ·¬qjt

be the resulting query. If this query is empty, then the answer to the original
query is false, i.e., the original query is false in every repair. If the resulting query
is not empty, we must check if there is a minimal hitting set for T a(DB, IC), that
contains {¬pi1, . . . ,¬pis,qj1 , . . . ,qjt}. If such a hitting set exists, the answer
to the original query is maybe, meaning that there is at least one repair where
the answer is false. Otherwise, the answer to the query is true.

Therefore, the problem of answering disjunctive queries for a given
T a(DB, IC) is equivalent to the problem of deciding whether a given set can
be extended to a minimal hitting set of the family. Since this is an NP-complete
problem, we have the following result.

940 Marcelo Arenas, Leopoldo Bertossi, and Michael Kifer

Proposition 3. Suppose that T a(DB, IC) has been precomputed. Then the
problem of deciding whether true is a consistent answer to a disjunctive ground
query is NP-complete with respect to the size of DB plus T a(DB, IC).

7 Conclusions

We presented a new semantic framework, based on Annotated Predicate Cal-
culus [9], for studying the problem of query answering in databases that are
inconsistent with integrity constraints. This was done by embedding both the
database instance and the integrity constraints into a single theory written in an
APC with an appropriate truth values lattice. In this way, we obtain a general
logical specification of database repairs and consistent query answers.

With this new framework, we are able to provide a better analysis of the com-
putational complexity of query answering in such environments and to develop
a more general query answering mechanism than what was known previously
[1]. We also identified certain classes of queries and constraints that have lower
complexity, and we are looking into better query evaluation algorithms for these
classes.

The development of the specific mechanisms for consistent query answering
in the presence of universal ICs, and the extension of our methodology to con-
straints that contain existential quantifiers (e.g., referential integrity constraints)
is left for future work.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments.
Work supported by Fondecyt Grants # 1980945, # 1000593; and
ECOS/CONICYT Grant C97E05.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In Proc. ACM Symposium on Principles of Database Systems (ACM
PODS’99, Philadelphia), pages 68–79, 1999.

2. N. Belnap. A Useful Four-Valued Logic. In M. Dunn and G. Epstein, editors,
Modern Uses of Multi-Valued Logic, pages 8–37. Reidel Publ. Co., 1977.

3. H.A. Blair and V.S. Subrahmanian. Paraconsistent Logic Programming. Theoret-
ical Computer Science, 68:135–154, 1989.

4. T. Chou and M. Winslett. A Model-Based Belief Revision System. J. Automated
Reasoning, 12:157–208, 1994.

5. T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base
Revision, Updates, and Counterfactuals. J. Artificial Intelligence, 57(2-3):227–270,
1992.

6. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., 1979.

7. M. Gertz. Diagnosis and Repair of Constraint Violations in Database Systems.
PhD thesis, Universität Hannover, 1996.

Applications of Annotated Predicate Calculus 941

8. M.L. Ginsberg. Multivalued Logics: A Uniform Approach to Reasoning in Artificial
Intelligence. Computational Intelligence, 4:265–316, 1988.

9. M. Kifer and E.L. Lozinskii. A Logic for Reasoning with Inconsistency. Journal
of Automated Reasoning, 9(2):179–215, November 1992.

10. M. Kifer and V.S. Subrahmanian. Theory of Generalized Annotated Logic Pro-
gramming and its Applications. Journal of Logic Programming, 12(4):335–368,
April 1992.

11. V.S. Subrahmanian. On the Semantics of Quantitative Logic Programs. In IEEE
Symposium on Logic Programming, pages 173–182, 1987.

12. M.H. van Emden. Quantitative Deduction and its Fixpoint Theory. Journal of
Logic Programming, 1(4):37–53, 1986.

	Introduction
	Preliminaries
	Annotated Predicate Calculus
	Embedding Databases in APC
	Repairing Inconsistent Databases
	Finiteness of $unhbox voidb @x hbox {${cal T}^{bf a}({{bf DB}}xspace ,{{bf IC}}xspace)$}xspace
$

	Queries to Inconsistent Databases
	Conclusions
	References

