Semantics and Optimization of the SPARQL 1.1
Federation Extension

Carlos Buil-Aranda, Marcelo Arenasand Oscar CorcHo

I Ontology Engineering Group, Facultad de Informatica, UBdain
2 Department of Computer Science, PUC Chile

Abstract The W3C SPARQL working group is defining the new SPARQL 1.1
query language. The current working draft of SPARQL 1.1 f&sumainly on the
description of the language. In this paper, we provide a &ization of the syntax
and semantics of the SPARQL 1.1 federation extension, aariiapt fragment of
the language that has not yet received much attention. 8gsice propose opti-
mization techniques for this fragment, provide an impleraton of the fragment
including these techniques, and carry out a series of exgets that show that
our optimization procedures could significantly speed wp dhery evaluation
process.

1 Introduction

The recent years have witnessed a large and constant growitie iamount of RDF
data available on the Web, exposed by means of Linked Dathleth URLs and by
SPARQL endpoints. Several non-exhaustive, and sometintesfalate or not contin-
uously maintained, lists of SPARQL endpoints or data cgtbre available in differ-
ent formats (from wiki-based HTML pages to SPARQL endpoirgig data catalog
description vocabularies). Besides, most of these datasetinterlinked, what allows
navigating through them and facilitates building complerdes combining data from
heterogeneous datasets.

These SPARQL endpoints accept queries written in SPARQL aalinétre to the
SPARQL protocol, as defined by the W3C recommendation. Hewete current
SPARQL recommendation has an important limitation in dafjrind executing queries
that span across distributed datasets, since it only cerssitle possibility of executing
these queries in isolated SPARQL endpoints. Hence uselingvib federate queries
across a number of SPARQL endpoints have been forced toecaeathoc extensions
of the query language or to include additional informatidwowat data sources in the
configuration of their SPARQL endpoint servers [14,15].sThas led to the inclusion
of query federation extensions in the current SPARQL 1.lkimgrdraft [12] (together
with other extensions that are out of the scope of this pap#ith are studied in detail
in order to generate a new W3C recommendation in the cominghmso

The federation extension of SPARQL 1.1 includes two new aipes in the query
language: SERVICE and BINDINGS. The former allows speaifyinside a SPARQL
query, the SPARQL query service in which a portion of the gual be executed. This
query service may be known at the time of building the querg,fzence the SERVICE

operator will already specify the IRI of the SPARQL endpaihiere it will be executed,;
or may be retrieved at query execution time after executimmiial SPARQL query

fragment in one of the aforementioned RDF-enabled datdogstaso that potential
SPARQL endpoints that can answer the rest of the query cabtaaed and used. The
latter (BINDINGS) allows transferring results that are dise constrain a query, and
which will normally come from previous executions of otheegies or from constraints
specified in user interfaces that then transform these IRER®)L queries.

Till now, most of the work done on federation extensions me¢hntext of the W3C
working group has been focused on the description of theuagg grammar. In this
paper we complement this work with the formalization of thietax and semantics of
these federation extensions of SPARQL 1.1, and with the itiefinof the constraints
that have to be considered in their use (which is currenttyomrestricted) in order to
be able to provide pragmatic implementations of query etahs. As an extreme exam-
ple of bad performance, we may imagine a query that uses tR¥/I€FE operator with
a free variable to specify the SPARQL endpoint where theaktie query has to be
evaluated. We may imagine that a naive implementation reay to go through all ex-
isting SPARQL endpoints on the Web evaluating that quenyrfrent before providing
a result, something that can be considered infeasible ttipghterms. For our purpose,
we define the notions of service-boundedness and servieress, which ensure that
the SERVICE operator can be safely evaluated.

Besides, we implement the optimizations proposed in [1sihgithe notion of well-
designed patterns, which prove to be effective in the ogtition of queries that contain
the OPTIONAL operator, the most costly operator in SPARQL,[¥]. This has also
importantimplications in the number of tuples being trensfd and joined in federated
queries, and hence our implementation benefits from this.

As a result of our work, we have not only formalized these oratj but we have
also implemented a system that supports the current SPARQIfedleration exten-
sions and makes use of these optimizations. This systemrRQPAQP (which stands
for SPARQL Distributed Query Processing), is built on toptleé OGSA-DAI and
OGSA-DQP infrastructure [3,10], what provides additionalbustness to deal with
large amounts of data in distributed settings, supportorgekample an indirect ac-
cess mode that is normally used in the development of dé¢asive workflows. We
have evaluated our system using a small benchmark of reaRQPAL.1 queries from
the bioinformatics domain, and compared it with other saimflystems, in some cases
adapting the queries to their own ad-hoc SPARQL extenssanihiat the benefits of our
implementation can be illustrated.

With this work, we aim at advancing to the current state ofatidoping to include
it in the next versions of the SPARQL working drafts, and pdovg SPARQL-DQP as
one of the reference implementations of this part of themenendation. We also hope
that the initial benchmark that we have defined can be extbadd stabilized in order
to provide a good evaluation framework, complementingte}gsenchmarks.

Organization of the paper. In Section 2, we describe the syntax and semantics
of the SPARQL 1.1 federation extension. In Section 3, weohice the notions of
service-safeness, which ensures that the SERVICE opeatdre safely evaluated. In
Section 4, we present some optimization techniques fontakiation of the SPARQL

1.1 federation extension. Finally, in Section 5, we presemtimplementation as well
as an experimental evaluation of it.

2 Syntax and Semantics of the SPARQL 1.1 Federation Extensio

In this section, we give an algebraic formalization of th&RBL 1.1 federation ex-
tension over simple RDF, that is, RDF without RDFS vocahuéard literal rules. Our
starting point is the existing formalization of SPARQL deised in [11], to which we
add the operatoiSERVICE andBINDINGS proposed in [12].

We introduce first the necessary notions about RDF (takenlyniom [11]). As-
sume there are pairwise disjoint infinite sé{sB, and L (IRIs [6], Blank nodes, and
Literals, respectively). Then a triplg, p,0) € (U B) x I x (I UB U L) is called
anRDF triple. In this tuple,s is thesubject p the predicateando the object An RDF
graphis a set of RDF triples. Moreover, assume the existence onfmte setl” of
variables disjoint from the above sets, and [eBNBOUND to be a reserve word that
does not belong to any of the sets mentioned previously.

2.1 Syntax of the federation extension

The official syntax of SPARQL [13] considers operatd@®T| ONAL, UNI ON,

FI LTER, SELECT and concatenation via a point symbo)(to construct graph pat-
tern expressions. Operat@&RVI CE andBI NDI NGS are introduced in the SPARQL
1.1 federation extension, the former for allowing usersitea a portion of a query
to a particular SPARQL endpoint, and the latter for trangfgrresults that are used
to constrain a query. The syntax of the language also corsgidé to group patterns,
and some implicit rules of precedence and association.derdo avoid ambiguities
in the parsing, we follow the approach proposed in [11], aedivét present the syn-
tax of SPARQL graph patterns in a more traditional algebfaimalism, using op-
eratorsAND (.), UNION (UNI ON), OPT (OPTI ONAL), FILTER (FI LTER) and
SERVICE (SERVI CE), then we introduce the syntax of BINDINGS queries, which
use theBINDINGS operator Bl NDI NGS), and we conclude by defining the syntax
of SELECT queries, which use tiELECT operator SELECT). More precisely, a
SPARQL graph pattern expression is defined recursively lasye:

(1) Atuple from(IULUV) x (JUV) x (IULUYV)is a graph pattern (a triple
pattern).

(2) If P, and P, are graph patterns, then expressioRs AND P), (P OPT P,),
and(P; UNION P) are graph patterns.

(3) If Pis a graph pattern anf is aSPARQL built-in conditionthen the expression
(P FILTER R) is a graph pattern.

(4) If Pisagraph pattern ande (I U V), then(SERVICE « P) is a graph pattern.

Moreover, a SPARQL BINDINGS query is defined as follows:

(5) If P is a graph pattern$ is a nonempty list of pairwise distinct variables and
{44,...,A,} is anonempty set of lists such that for every {1,...,n}, it holds
that A; and S have the same length and each elemem jelongs to(/ U L U
{UNBOUNDY}), then(P BINDINGS S {4,,...,A,})is a BINDINGS query.

Finally, assuming thaP is either a graph pattern or a BINDINGS query,et(P) be
the set of variables mentioned ih Then a SPARQL SELECT query is defined as:

(6) If P is either a graph pattern or a BINDINGS query, dndis a set of variables
such thatV C var(P), then(SELECT W P) is a SELECT query.

It is important to notice that the rules (1)—(3) above weteoduced in [11], while we
formalize in the rules (4)—(6) the federation extensionBARQL proposed in [12].

In the previous definition, we use the notion of built-in ciiwh for the filter oper-
ator. A SPARQL built-in condition is constructed using etts of the set/ U LU V)
and constants, logical connectives, (A, V), inequality symbols ¢, <, >, >), the
equality symbol €), unary predicates likbound, isBlank, andisIRI, plus other fea-
tures (see [13] for a complete list). Due to the lack of spaeerestrict in this paper
to the fragment of SPARQL where the built-in condition is aoB@n combination of
terms constructed by using andbound, thatis: (1) if?7X,?Y € V andc € (U L),
thenbound(?X), 7X = ¢ and?X =?Y are built-in conditions, and (2) iR, and R
are built-in conditions, thet—R;), (R; V Rz) and(Ry A Rz) are built-in conditions.
It should be noticed that the results of the paper can beyeasieénded to the other
built-in predicates in SPARQL.

Let P be either a graph pattern or a BINDINGS query or a SELECT querthe
rest of the paper, we user(P) to denote the set of variables occurringinSimilarly,
for a built-in conditionR, we usevar(R) to denote the set of variables occurringin

2.2 Semantics of the federation extension

To define the semantics of SPARQL queries, we need to inteodome extra ter-
minology from [11]. A mappingu from V to (I U B U L) is a partial function
'V — (I UBUL). Abusing notation, for a triple pattetnwe denote by.(t) the
triple obtained by replacing the variablesiaccording tq:. The domain of:, denoted
by dom(u), is the subset of” wherey is defined. Two mappings, and ., are com-
patible when for al? X € dom(u) N dom(us), itis the case that, (?X) = ua(?X),
i.e. whenu; U ps is also a mapping.

Let {2, and (2, be sets of mappings. Then the join of, the union of, the difiee
between and the left outer-join betwe&n and (2, are defined as follows [11]:

21) 29 ={p1 Upa | 1 € 21, us € 22 anduy, uo are compatible mappings
MU ={plpeiorpe },

D N2 ={pe | forall ' € 2, pandy’ are not compatible

QM0 = (21) Q) U (21~).

Next we use the preceding operators to give semantics tdgragiern expressions,
BINDINGS queries and SELECT queries. More specifically, veérte this semantics
as a function[-], which takes as input any of these types of queries and =rn
set of mappings. In this definition, we assume given a pdrtiation ep from the set
I of IRIs such that for every € I, if ep(c) is defined, then €p) is an RDF graph.
Intuitively, function ep is defined for an element I (¢ € dom(ep)) if and only if ¢

is the IRI of a SPARQL endpoint, and gy is the default RDF graph of that endpdint
Moreover, in this definitionuy represents the mapping with empty domain (which is
compatible with any other mapping).

The evaluation of a graph pattefhover an RDF grapli, denoted by P], is de-
fined recursively as follows (due to the lack of space, werttbiereader to the extended
version of the paper for the definition of the semantics offHET'ER operator):

(1) If Pis atriple patterrt, then[P]¢ = {u | dom(u) = var(t) andu(t) € G}.
(2) If Pis (Pl AND Pg), then[[P]]G = [[PlﬂG X [[Pgﬂg.

(3) If Pis (Pl OPT PQ), then[[PﬂG = [[Pl]]g ™ [[Pgﬂg.

(4) If Pis (P, UNION P,), then[P]¢ = [Pi]¢ U [P]c.

(5) If Pis (SERVICE ¢ P;) with ¢ € I, then

. [[Plﬂep(c) if c € dom(ep)
[Ple = {{u@} otherwise

(6) If Pis (SERVICE ?X Py)with 7X € V, then[P] is equal to:

U {H | there existg)’ € [(SERVICE ¢ Py)]¢ s.t. dom(p) = (dom(p') U {?X}),

cel

w(?X) = candu(?Y) = i/ (?Y) for every?Y € dom(,u/)}

Moreover, the semantics of BINDINGS queries is defined devia. Given a listS =
[?X4,...,7X,] of pairwise distinct variables, whefe> 1, and a listA = [ay, .. ., a/]
of values from(I U L U {UNBOUNDY}), let 15,4 be a mapping with domaifi?X; |
i € {l,...,4} anda; € (I U L)} and such thafis 4(?X;) = a; for every?X,; €
dom(ps, 4). Then

(7) If P = (P, BINDINGS S {A;,...,A,})is a BINDINGS query:

[Pl = [Pilc ™ {ps.ass---sHs.A, }-

Finally, the semantics of SELECT queries is defined as fald@iven a mapping :
V — (IU BU L) and a set of variabldd” C V, the restriction of. to W, denoted by
)y » IS @ mapping such thabom (s,) = (dom(u) N W) andp,, (7X) = p(?X) for
every?X € (dom(u) N W). Then

(8) If P = (SELECT W P)is a SELECT query:[Pc = {p,, | 1 € [Pi]c}-

It is important to notice that the rules (1)—(4) above weteoduced in [11], while we
propose in the rules (5)—(8) a semantics for the oper&BiRVICE and BINDINGS
introduced in [12]. Intuitively, ifc € I is the IRI of a SPARQL endpoint, then the idea
behind the definition of SERVICE ¢ P) is to evaluate query; in the SPARQL end-
point specified by.. On the other hand, if € I is not the IRI of a SPARQL endpoint,

% For simplicity, we only assume a single (default) graph andnamed graphs per remote
SPARQL endpoint.

then(SERVICE ¢ P;) leaves unbounded all the variablesn, as this query cannot
be evaluated in this case. This idea is formalized by makijnthe only mapping in the
evaluation of SERVICE ¢ P,) if ¢ ¢ dom(ep). In the same waySERVICE ?X P;)

is defined by considering all the possible IRIs for the vdaalX, that is, all the val-
uesc € [. In fact, (SERVICE ?X P) is defined as the union of the evaluation of the
graph pattern$SERVICE ¢ P;) for the values: € I, but also storing irr X the IRIs
from where the values of the variablesih are coming from. Finally, the idea behind
the definition of(P, BINDINGS S {4,,...,4,}) is to constrain the values of the
variables inS to the values specified id4, . . ., A4,,.

Example 1.Assume thatG is an RDF graph that uses triples of the form
(a, serviceaddressh) to indicate that a SPARQL endpoint with nameés located at
the IRIb. Moreover, letP be the following SPARQL query:

{SELECT {?X,7N,?E}
(((?X, serviceaddress?Y’) AND (SERVICE ?Y (7N, email ?E)))

BINDINGS [?N] {[John], [Peteﬂ})}

QueryP is used to compute the list of names and email addressesahaecretrieved
from the SPARQL endpoints stored in an RDF graph. In fagt,df [P]¢, thenu(?X)

is the name of a SPARQL endpoint storeddnu(?N) is the name of a person stored
in that SPARQL endpoint and(?E) is the email address of that person. Moreover,
the operatoBINDINGS in this query is used to filter the values of the variahlé.
Specifically, if € [P]a, thenu(?N) is either John or Peter. O

The goal of the rules (5)—(8) is to define in an unambiguouswiagt the result of
evaluating an expression containing the operas®RBVICE and BINDINGS should
be. As such, these rules should not be considered as an irpiation of the language.
In fact, a direct implementation of the rule (6), that defittesssemantics of a pattern of
the form(SERVICE ?X P;), would involve evaluating a particular query in every pos-
sible SPARQL endpoint, which is obviously infeasible ingiree. In the next section,
we face this issue and, in particular, we introduce a syigtacindition on SPARQL
queries that ensures that a pattern of the f@BRVICE ?X P;) can be evaluated by
only considering a finite set of SPARQL endpoints, whose Hésactually taken from
the RDF graph where the query is being evaluated.

3 On Evaluating the SERVICE Operator

As we pointed out in the previous section, the evaluation piatern of the form
(SERVICE ?X P) is infeasible unless the variablé&l is bound to a finite set of IRIs.
This notion ofboundednesis one of the most significant and unclear concepts in the
SPARQL federation extension. In fact, the current versiithe specification [12] only
specifies that a variableX in a pattern of the forfiSERVICE ?X P) must be bound

but without providing a formal definition of what that meahkere we provide a for-
malization of this concept, studying the complexity issagsociated with it.

3.1 The notion of boundedness

In Example 1, we present a SPARQL query containing a patt8ERVICE 7Y
(?N,email 7F)). Given that variable’Y” is used to store the address of a remote
SPARQL endpointto be queried, it is important to assign aev&h?Y prior to the eval-
uation of theSERVICE pattern. In the case of the query in Example 1, this needs of a
simple strategy: given an RDF grapgh first compute](? X, serviceaddress?Y)],
and then for every, in this set, computd(SERVICE « (?N,email 7E))] with

a = p(?Y). More generally, SPARQL patterffsERVICE ?Y (?N,email 7E)) can

be evaluated in this case as only a finite set of values frordah@ain of G need to be
considered as the possible valuesbt. This idea naturally gives rise to the following
notion of boundedness for the variables of a SPARQL querthéndefinition of this
notion,dom(G) refers to the domain af, that is, the set of elements frofhU BU L)
that are mentioned i&¥, anddom(P) refers to the set of elements frothu L) that are
mentioned inP.

Definition 1 (Boundedness)Let P be a SPARQL query aritlX € var(P). Then?X
is bound inP if one of the following conditions holds:

— P is either a graph pattern or a BINDINGS query, and for everyfR@raph G
and mapping: € [P]g, it holds that?X € dom(u) and u(?X) € (dom(G) U
dom(P)).

— Pisa SELECT querySELECT W P;) and?X is bound inP;.

The BINDINGS operator can make a varialdl& in a queryP to be bound by assign-
ing to it a fixed set of values. Given that these values are ec¢ssarily mentioned in
the RDF graphG whereP is being evaluated, the previous definition first imposes the
condition that’X € dom(u), and then not only considers the cagéX) € dom(G)

but also the casg(?X) € dom(P). As an example of the above definition, we note
that variable’Y is bound in the graph pattern

Py = ((7X, serviceaddress’Y') AND (SERVICE 7Y (?N,email 7F))),

as for every RDF graplr and mappingu € [P1]¢, we know that?Y € dom(u)
and p(?Y) € dom(G). Moreover, we also have that variabt®” is bound in
(SELECT {?X,?N,?E} P;) as?Y is bound in graph patterR; .

A natural way to ensure that a SPARQL quétcan be evaluated in practice is by
imposing the restriction that for every sub-pattésitRVICE ?X P;) of P, it holds
that? X is bound inP. However, in the following theorem we show that such a cooulit
is undecidable and, thus, a SPARQL query engine would nobles@check it in order
to ensure that a query can be evaluated.

Theorem 1. The problem of verifying, given a SPARQL quérand a variable? X €
var(P), whether? X is bound inP is undecidable.

The fact that the notion of boundedness is undecidable ptewne from using it as
a restriction over the variables in SPARQL queries. To overe this limitation, we
introduce here a syntactic condition that ensures thatiablaris bound in a pattern
and that can be efficiently verified.

Definition 2 (Strong boundedness).Let P be a SPARQL query. Then the set of
strongly bound variables i, denoted byB(P), is recursively defined as follows:

— if P =t, wheret is a triple pattern, thersB(P) = var(¢);

if P = (P, AND P,), thenSB(P) = SB(P;) U SB(P);

if P = (P, UNION P,), thenSB(P) = SB(P1) N SB(F,);

if P = (P, OPT P;) or P = (P, FILTER R), thenSB(P) = SB(P);

if P = (SERVICE ¢ P,), withc € I, or P = (SERVICE ?X P,),with?X € V,

thenSB(P) = 0);

—if P = (P, BINDINGS S {4,...,A,}), thenSB(P) = SB(P)) U {?X |
?X isin S and forevery € {1,...,n}, itholds that?X € dom(us,4;)}-

— if P = (SELECT W P,), thenSB(P) = (W NSB(P,)).

The previous definition recursively collects from a SPARQlery P a set of vari-
ables that are guaranteed to be boun&ir-or example, ifP is a triple patterr, then
SB(P) = var(t) as one knows that for every variafl& € var(¢) and for every RDF
graphG, if i1 € [t]e, then?X € dom(u) andu(?X) € dom(G). In the same way,
if P = (P, AND P,), thenSB(P) = SB(P;) U SB(P,) as one knows that it X
is bound inP; or in P, then?X is bound inP. As a final example, notice that if
P = (P, BINDINGS S {A,...,A,}) and?X is a variable mentioned i§ such
that?X € dom(us, a,) foreveryi € {1,...,n}, then?X € SB(P). In this case, one
knows that’ X is bound inP since[P]¢ = [Pi]¢ X {ps,4,,-- - 5,4, t and?X isin
the domain of each one of the mappings.,, which implies thaf(?X) € dom(P)
for everyu € [P]q. In the following proposition, we formally show that ouruition
aboutSB(P) is correct, in the sense that every variable in this set imbdw P.

Proposition 1. For every SPARQL query and variable?X € var(P), if 7X €
SB(P), then?X is bound inP.

Given a SPARQL query’ and a variable€ X < var(P), it can be efficiently verified
whether? X is strongly bound inP. Thus, a natural and efficiently verifiable way to en-
sure that a SPARQL query can be evaluated in practice is by imposing the restriction
that for every sub-patteff8ERVICE ?X P;) of P, it holds that?’ X is strongly bound

in P. However, this notion still needs to be modified in order taubeful in practice, as
shown by the following examples.

Example 2.Assume first thaf is the following graph pattern:
P, = ((7X,servicedescription?Z) UNION
((?X, serviceaddress?Y) AND (SERVICE ?Y (?N,email 7E)))).

That is, either?X and ?Z store the name of a SPARQL endpoint and a de-
scription of its functionalities, o” X and 7Y store the name of a SPARQL end-
point and the IRl where it is located (together with a list airmes and email

addresses retrieved from that location). Variablé is neither bound nor strongly
bound in P,. However, there is a simple strategy that ensures fhatcan be
evaluated over an RDF grapf: first compute[(?X, servicedescription?Z2)]q,
then compute[(?X, serviceaddress?’Y)[¢, and finally for everyu in the set
[(?X, serviceaddress?Y)], compute[(SERVICE a (?N,email ?E))]¢ with a =
w(?Y). In fact, the reason whyP; can be evaluated in this case is tHat is
bound (and strongly bound) in the sub-pattdifi.X, serviceaddress’Y) AND
(SERVICE ?Y (?N,email 7E))) of P;.

As a second example, assume thais an RDF graph that uses triples of the form
(a1, relatedwith, as) to indicate that the SPARQL endpoints located at the tRland
as store related data. Moreover, assume fRais the following graph pattern:

P, = ((?Uq,relatedwith, ?Us) AND
(SERVICE ?U; ((?N, email ?E) OPT (SERVICE ?U, (?N, phong?F))))).

When this query is evaluated over the RDF graghit returns for every tuple
(a1, relatedwith, as) in G, the list of names and email addresses that that can be re-
trieved from the SPARQL endpoint locatedat together with the phone number for
each person in this list for which this data can be retrievethfthe SPARQL endpoint
located at, (recall that graph pattefSERVICE ?U; (7N, phone?F)) is nested in-
side the first SERVICE operator i};). To evaluate this query over an RDF graph, first
it is necessary to determine the possible values for varidhl, and then to submit the
query ((?N,email 7E) OPT (SERVICE ?U, (?N,phone?F))) to each one of the
endpoints located at the IRIs storedt;. In this case, variabl&U; is bound (and
also strongly bound) ir?,. However, this variable is not bound in the graph pattern
((?N,email 7E) OPT (SERVICE ?U, (?N,phone?F))), which has to be evaluated
in some of the SPARQL endpoints stored in the RDF graph wikgris being evalu-
ated, something that is infeasible in practice. Notice thedifficulties in evaluating

are caused by the nesting ®ERVICE operators (more precisely, by the fact tifat
has a sub-pattern of the forfRERVICE ?X; Q1), whereQ; has in turn a sub-pattern
of the form(SERVICE ?Xs ()2) such that’ X5 is bound inP, but notinQ-). O

In the following section, we use the concept of strongly irdness to define a notion
that ensures that a SPARQL query containingdAR&VICE operator can be evaluated
in practice, and which takes into consideration the ideasemted in Example 2.

3.2 The notion of service-safeness: Considering sub-pattes and nested
SERVICE operators

The goal of this section is to provide a condition that ensihat a SPARQL query
containing theSERVICE operator can be safely evaluated . To this end, we first need
to introduce some terminology. Given a SPARQL quérydefine7 (P) as theparse

tree of P. In this tree, every node corresponds to a sub-patter.gkn example of

a parse tree of a patterp is shown in Figure 1. In this figurey, us, us, uq, us, ug

are the identifiers of the nodes of the tree, which are labeiddthe sub-patterns of

Q. It is important to notice that in this tree we do not make aisfilgction between

uy : ((?Y,a,?Z) UNION ((?X,b,c) AND (SERVICE ?X (?Y, a,?Z2))))

/\

uz : (?Y,a,?7Z) u3 : ((?X,b,c) AND (SERVICE 7X (7Y, a,72)))
wg: (2X,b,c) us : (SERVICE ?7X (?Y,a,?2))

i

ug : (?Y,a,?2)

Figure 1. Parse treel (Q) for the graph patterd) = ((?Y,a,?Z) UNION ((?X,b,c) AND
(SERVICE ?X (7Y, a,?Z2)))).

the different operators in SPARQL, we just store the stmgctif the sub-patterns of a
SPARQL query.

Tree7 (P) is used to define the notion of service-boundedness, whiemnéds the
concept of boundedness, introduced in the previous sedbaronsider variables that
are bound inside sub-patterns and neSi@HVICE operators. It should be noticed that
these two features were identified in the previous sectiampsrtant for the definition
of a notion of boundedness (see Example 2).

Definition 3 (Service-boundedness)A SPARQL query is service-bound if for every
nodeu of 7 (P) with label (SERVICE ?X P;), it holds that: (1) there exists a node
of 7 (P) with label P, such thaw is an ancestor of. in 7 (P) and?X is bound inPs;
(2) P, is service-bound.

For example, query) in Figure 1 is service-bound. In fact, condition (1) of Def-
inition 3 is satisfied as:5 is the only node in7 (Q) having as label EERVICE
graph pattern, in this cas8ERVICE ?X (?Y,a,?77)), and for the node, it holds
that: us is an ancestor ofi; in 7(P), the label ofus is P = ((?X,b,c) AND
(SERVICE ?X (?Y,a,?Z)))and?X is bound inP. Moreover, condition (2) of Defini-
tion 3 is satisfied as the sub-pattéry’, a, 72) of the label ofus is also service-bound.

The notion of service-boundedness captures our intuitimutthe condition that
a SPARQL query containing tfeERVICE operator should satisfy. Unfortunately, the
following theorem shows that such a condition is undecielabid, thus, a query engine
would not be able to check it in order to ensure that a quenpesgvaluated.

Theorem 2. The problem of verifying, given a SPARQL qu&rnwhetherP is service-
bound is undecidable.

As for the case of the notion of boundedness, the fact thandi®n of service-
boundedness is undecidable prevents one from using it asrtien over the variables
used iNSERVICE calls. To overcome this limitation, we replace the reswitthat the
variables used iISERVICE calls are bound by the decidable restriction that they are
strongly bound. In this way, we obtain a syntactic conditeer SPARQL patterns that
ensures that they are service-bound, and which can be efficierified.

Definition 4 (Service-safenessA SPARQL query is service-safe if for every node
u of 7(P) with label (SERVICE ?X Py), it holds that: (1) there exists a nodeof

7T (P) with label P, such thaw is an ancestor of. in 7 (P) and?X € SB(F%); (2) P,
is service-safe.

Proposition 2. If a SPARQL query is service-safe, theR is service-bound.

The notion of service-safeness is used in our system toyvirdtt a SPARQL pattern
can be evaluated in practice. We conclude this section bigtipgi out that it can be
efficiently verified whether a SPARQL que# is service-safe, by using a bottom-up
approach over the parse tré¢P) of P.

4 Optimizing the Evaluation of the OPTIONAL Operator in
SPARQL Federated Queries

If a SPARQL query@ including the SERVICE operator has to be evaluated in a
SPARQL endpoint4, then some of the sub-queries @f may have to be evaluated
in some external SPARQL endpoints. Thus, the problem ofrdpting the evaluation
of @ in A, and, in particular, the problem of reorderi@gin A to optimize this evalu-
ation, becomes particularly relevant in this scenarionasoime cases one cannot rely
on the optimizers of the external SPARQL endpoints. Motngaby this, we present in
this section some optimization techniques that extendatieniques presented in [11]
to the case of SPARQL queries using 81€RVICE operator, and which can be applied
to a considerable number of SPARQL federated queries.

4.1 Optimization via well-designed patterns

In [11,17], the authors study the complexity of evaluatihg fragment of SPARQL
consisting of the operatorsND, UNION, OPT andFILTER. One of the conclusions
of these papers is that the main source of complexity in SFHABGnes from the use
of the OPT operator. In light of these results, it was introduced in][dXragment
of SPARQL that forbids a special form of interaction betweanables appearing in
optional parts, which rarely occurs in practice. The paten this fragment, which are
called well-designed patterns [11], can be evaluated nféiogemtly and are suitable for
reordering and optimization. In this section, we extenddb&nition of the notion of
being well-designed to the case of SPARQL patterns usingii&vICE operator, and
prove that the reordering rules proposed in [11], for opting the evaluation of well-
designed patterns, also hold in this extension. The useeskthules allows to reduce
the number of tuples being transferred and joined in feddrgtieries, and hence our
implementation benefits from this as shown in Section 5.

Let P be a graph pattern constructed by using the operatdiis, OPT, FILTER
and SERVICE, and assume tha? satisfies the safety condition that for every sub-
pattern(P; FILTER R) of P, it holds thatvar(R) C var(P;). Then, by following [11],
we say thatP is well-designed if for every sub-pattef = (P, OPT P,) of P and
for every variable? X occurring inP: If ?X occurs both insidé?, and outsidel”’,
then it also occurs i, . All the graph patterns given in the previous sections aré we
designed. On the other hand, the following patt&ris not well-designed:

((?X, nickname?Y’) AND (SERVICE ¢ ((?X,email ?U) OPT (7Y, email ?V)))),

as for the sub-patter®?’ = (P, OPT P,) of P with P, = (?X,email ?U) and
P, = (?Y,email 7V)), we have that’Y occurs inP, and outsideP’ in the triple
pattern (? X, nickname?Y’), but it does not occur in?;. Given an RDF grapl@,
graph patternP retrieves fromG a list of people with their nicknames, and retrieves
from the SPARQL endpoint located at the IRthe email addresses of these people
and, optionally, the email addresses associated to thefinames. What is unnatu-
ral about this graph pattern is the fact tal’, email 7V') is giving optional infor-
mation for (?X, nickname?Y’), but in P appears as giving optional information for
(?X,name?U). In fact, it could happen that some of the results retrieyedding the
triple pattern(? X, nickname?Y") are not included in the final answer Bf as the value
of variable?Y” in these intermediate results could be incompatible withvalues for
this variable retrieved by using the triple patt€ry’, email 7V").

In the following proposition, we show that well-designedtpes including the
SERVICE operator are suitable for reordering and, thus, for opttidn.

Proposition 3. Let P be a well-designed pattern arfél a pattern obtained fron® by
using one of the following reordering rules:

(P, OPT P,) FILTER R) —> ((P; FILTER R) OPT P,),
(P, AND (P, OPT P3)) —> ((P, AND P,) OPT P;),
((P, OPT P5) AND P;) — ((P, AND P;) OPT P).

ThenP’ is a well-designed pattern equivalentk

The proof of this proposition is a simple extension of thegbrof Proposition 4.10
in [11]. In the following section, we show that the use of thesles can have a consid-
erable impact in the cost of evaluating graph patterns.

5 Implementation of SPARQL-DQP and well-designed patterns
optimization

In this section, we describe how we implemented and evaluag optimization tech-
niques presented in the previous section. In particulaidevaonstrate that they effec-
tively decrease the processing time of SPARQL 1.1 federguedies.

5.1 Implementation: SPARQL-DQP

We have implemented the rewriting rules described in Seatid in SPARQL-DQP
[5], together with a bottom up algorithm for checking the dibion of being well-
designed. SPARQL-DQP is a query evaluation system builoprof OGSA-DAI [3]
and OGSA-DQP [10]. OGSA-DAI is a generic service-based dat#ss, integration,
transformation and delivery framework that allows exawytilata-centric workflows
involving heterogeneous data resources. OGSA-DAI is natiegl in Apache Tomcat
and within the Globus Toolkit, and is used in OMII-UK, the UKSeience platform.
OGSA-DQP is the Distributed Query Processing extension@8@-DAI, which ac-
cess distributed OGSA-DAI data resources and providedlpkzation mechanisms.

SPARQL-DQP [5] extends this framework with new SPARQL pesstgical query
plan builders, operators and optimizers for distributedrgjurocessing. The main rea-
son for selecting this framework is that it provides builtxifrastructure to support DQP
and enables handling large datasets and tuple streamd) wiaig result from the exe-
cution of queries in different query services and data ssir¢he low level technical
details of our implementation can be found in [5].

5.2 Evaluation

In our evaluation, we compare the results and performanceuofsystem with
other similar systems that provide some support for SPARQé&ry federation. Cur-
rently, the engines supporting the official SPARQL 1.1 fatien extension are:
DARQ [14], Networked Graphs [15] and ARQ, which is availahl&a an on-
line web service l{tt p: // www. sparqgl . org/) as well as a library for Jena
(http://jena. sourceforge. net/). Other system that supports distributed
RDF querying is presented in [18]. We do not consider thisesgshere as it uses the
query language SeRQL instead of SPARQL.

The objective of our evaluation is to show first that we candi@®PARQL queries
that comply with the federated extension, and second tleadptimization techniques
proposed in Section 4.1 actually reduce the time neededatteps queries. We have
checked for existing SPARQL benchmarks like the Berlin SRARBenchmark [4],
SP’Bench [16] and the benchmark proposed in [7]. Unfortundtalypur purposes, the
first two are not designed for a distributed environment,levtiie third one is based
on a federated scenario but is not as comprehensive as thie 8BARQL Benchmark
and SPBench. Thus, we decided to base our evaluation on some guasia the life
sciences domain, similar to those in [7] but using a baseygared increasing its com-
plexity like in [4]. These queries are real queries used 2RDF experts.

Datasets description.The Bio2RDF datasets contains 2,3 billion triples orgaaize
around 40 datasets with sometimes overlapping informafible Bio2RDF datasets
that we have used in our benchmark are: Entrez Gene (13 mifiiples, stored in the
local endpoint spargl-pubmed), Pubmed (797 million tspl&iHPID (244,021 triples)
and MeSH (689,542 triples, stored in the local endpointgpaiesh). One of the prac-
tical problems that these benchmarks have is that publidcR€RAendpoints normally
restrict the amount of results that they provide. To overediis limitation we installed
Entrez Gene and MeSH in servers without these restrictiMesalso divided them in
files of 300,000 triples, creating endpoints for each onéeifrt.

Queries used in the evaluationWe used 7 queries in our evaluation. The query struc-
ture follows the following path: using the Pubmed referenmigtained from the Entrez
gene dataset, we access the Pubmed endpoint (queries Q12anith @hese queries,
we retrieve information about genes and their referencéseriPubmed dataset. From
Pubmed we access the information in the National Library efdMine’s controlled
vocabulary thesaurus (queries Q3 and Q4), stored at MeSpbartdso we have more
complete information about such genes. Finally, to inadahe data retrieved by our
queries we also access the HHPID endpoint (queries Q5, Q&andwhich is the
knowledge base for the HIV-1 protein. The queries, in insimgorder of complexity,

can be found aht t p: / / www. oeg-upm net/fil es/ sparql - dgp/ . Next we
show query Q4 to give the reader an idea of the type of qudréste are considering:

SELECT ?pubned ?genel ?nesh ?descriptor ?meshReference
WHERE

{SERVI CE <http://127.0.0.1: 2020/ spar gl - pubrmed> {
?genel <http://bio2rdf.org/geneid_resource: pubmed_xref> ?pubned .}}.
{ SERVI CE <http://pubned. bi o2rdf. org/sparql > {
?pubmed <http://bio2rdf.org/ pubnmed_resource: neshref> ?nmesh .
?mesh <htt p: // bi o2rdf. org/ pubmed_r esour ce: descri ptor> ?descriptor .}}.
OPTI ONAL { SERVI CE <http://127.0.0.1: 2021/ spar gl - mesh> {
?meshRef erence <http://ww. w3. or g/ 2002/ 07/ ow #saneAs> ?descriptor .}}.

Results. Our evaluation was done in an Amazon EC2 instance. The iosthas 2

cores and 7.5 GB of memory run by Ubuntu 10.04. The data us#dsrevaluation,

together with the generated query plans and the originaiegim Java formatting, can
be found ahtt p: / / www. oeg- upm net/fil es/ spar gl - dgp/ . The results of

our evaluation are shown in the following table:

Query Not optimized Optimized DARQ NetworkedGraphs ARQ
SPARQL-DQP SPARQL-DQP

Q1 79,000ms. 79,000ms. 10+ min. 10+ min. 440,296ms.
Q2 64,179ms. 64,179ms. 10+ min. 10+ min. 10+ min.
Q3 134,324ms. 134,324ms. 10+ min. 10+ min. 10+ min.
Q4 152,559ms. 136,482ms. 10+ min. 10+ min. 10+ min.
Q5 146,575ms. 146,575ms. 10+ min. 10+ min. 10+ min.
Q6 322,792ms. 79,178ms. 10+ min. 10+ min. 10+ min.
Q7 350,554ms. 83,153ms. 10+ min. 10+ min. 10+ min.

A first clear advantage of our implementation is the abildyuse asynchronous calls
facilitated by the use of indirect access mode, what meatsith do not get time out
in any of the queries. This time out happens when accessinglare distributed query
processing like in the case of AR@Mw. spar gl . or g/ quer y). It is important to
note that the ability to handle this type of queries is esakfdr many types of data-
intensive applications, such as those based on Bio2RDER. tbatsfer also plays a key
role in query response times. For example, in some quergebtal query engine re-
ceived 150,000 results from Entrez gene, 10,000 resulis ffabmed, 23,841 results
from MeSH and 10,000 results from HHPID. The implementednoigations are less
noticeable when the amount of transferred data is fewer.

It is possible to observe three different sets of resultsftbis preliminary evalua-
tion. The first set (Q1-Q3 and Q5) are those that are not optithtbecause the reorder-
ing rules in Section 4.1 are not applicable. The second qgeyyp (Q4) represents
the class of queries that can be optimized using our apprdathwhere the differ-
ence is not too relevant, because the less amount of treedfdata. The last group
of queries (Q6—Q7) shows a clear optimization when usingmelé-designed patterns
rewriting rules. For example, in query 6 the amount of transfd data varies from a
join of 150,000 x 10,000 tuples to a join ofl0, 000 x 23,841 tuples (using Entrez,
Pubmed and MeSH endpoints), which highly reduces the glotoglessing time of the

query. Regarding the comparison with other systems, theyotiproperly handle these
amounts of data. We represent as 10+ min. those queriessbdimore than 10 minutes
to be answered.

In summary, we have shown that our implementation providdtebresults than
other similar systems. Besides, we have also shown thatrgalementation, which ben-
efits from an indirect access mode, can be more approprideestovith large datasets.

Acknowledgments. We thank the anonymous referees, the OGSA-DAI team (spedilly
Hume), Marc-Alexandre Nolin, Jorge Pérez and Axel Pofidoe their help with this work. This
research was supported by ADMIRE project FP7 ICT-215024FRONDECYT grant 1090565.

References

1. S. Abiteboul, R. Hull and V. Vianuroundations of Database#\ddison-Wesley, 1995.

2. R.Angles and C. Gutierrez. The Expressive Power of SPARQISWC, pp. 114-129, 2008.

3. M. Antonioletti at al. OGSA-DAI 3.0 - The Whats and the Whirs UK e-Science All Hands
Meeting, pp. 158-165, 2007.

4. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. htSemantic Web Inf. Syst.
5(2):1-24, 2009.

5. C. Buil and O. Corcho. Federating Queries to RDF repasgor Technical Report, 2010,
http://oa.upm es/ 3302/ .

6. M. Durst and M. Suignard. Rfc 3987, Internationalized drese ldentifiers (IRIS).
http://wwv. ietf.org/rfc/rfc3987.txt.

7. P.Haase, T. Mathal3 and M. Ziller. An evaluation of apphes to federated query processing
over linked data. In I-SEMANTICS, 2010.

8. S. Harris and A. Seaborne. SPARQL 1.1 Query. W3C WorkingftDt June 2010,
http://ww. w3. org/ TR/ sparqgl 11- query/.

9. G. Klyne, J. J. Carroll and B. McBride. Resource desaipti framework
(RDF): Concepts and abstract syntax. = W3C RecommendationFdlruary 2004,
http://ww. w3. or g/ TR/ rdf - concept s/ .

10. S.Lynden etal. The design and implementation of OGSARDRservice-based distributed
query processor. Future Generation Computer Systems #RE{8):224—236, 2009.

11. J. Pérez, M. Arenas and C. Gutierrez. Semantics andlegitypof SPARQL. TODS 34(3),
20009.

12. E. Prud’hommeaux. SPARQL 1.1 Federation ExtensionsC W8rking Draft 1 June 2010,
http://ww. w3. org/ TR/ spar gl 11-f eder at ed- query/ .

13. E. Prud’hommeaux and A. Seaborne. SPARQL query landioagrkDF. W3C Recommen-
dation 15 January 2008t t p: / / www. wW3. or g/ TR/ rdf - spar gl - query/ .

14. B. Quilitz and U. Leser. Querying distributed RDF datarses with SPARQL. In ESWC,
pp. 524-538, 2008.

15. S. Schenk and S. Staab. Networked graphs: a declaragighamism for SPARQL rules,
SPARQL views and RDF data integration on the Web. In WWW, 185-594, 2008.

16. M. Schmidt, T. Hornung, G. Lausen and C. Pinkel. SP2BeAcBPARQL Performance
Benchmark. In ICDE, pp. 222—-233, 2009.

17. M. Schmidt, M. Meier and G. Lausen. Foundations of SPARQEry optimization. In
ICDT, pp. 4-33, 2010.

18. H. Stuckenschmidt, R. Vdovjak, H. Geert-Jan and J. Bswak Index structures and algo-
rithms for querying distributed RDF repositories. In WWWg, 631-639, 2004.

