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Abstract Databases may be inconsistent with respect to a given set of integrity
constraints. Nevertheless, most of the data may be consistent. In this paper we
show how to specify consistent data and how to query a relational database in such
a way that only consistent data is retrieved. The specification and queries are based
on disjunctive extended logic programs with positive and negative exceptions that
generalize those previously introduced by Kowalski and Sadri.

1 Introduction

Information repositories of today are often built on top of multiple het-
erogenous data sources. This fact has spurred the rethinking of the classi-
cal database problems like query evaluation and optimization [11,31], and
integrity constraints. Data coming from multiple, autonomous sources is un-
likely to satisfy given integrity constraints, even though each source sepa-
rately may satisfy them. (Consider a person’s address or name that may be
different in different data sources.) The autonomy of different data sources
makes it infeasible to correct global integrity violations. However, the con-
straints describe important semantic properties of the data and should not be
cast aside. We propose to use them to augment the query answering process.
In our approach, databases will provide not only regular query answers (com-
puted without taking into account the integrity constraints) but, in addition,
query answers that are consistent with the constraints.

The following example presents the basic intuitions behind the notion of
consistent query answer.
Ezample 1. Consider a database subject to the following IC: Vz(P(z) =
Q(z)). The databases instance {P(a),P(b),Q(a),Q(c)} (as a first order
structure) violates this constraint. Now if the query asks for all z such that
P(z) is true, then only a is returned as an answer consistent with the integrity
constraint. There is a repair in which P(b) is not true, and thus b is not a
consistent answer. O

Intuitively, if a query answer is consistent, then it is stable: regardless of
how the integrity violation is fixed it remains an answer. On the other hand,
a query answer which is inconsistent may be due to some transient error in
the data and therefore is not very reliable. Therefore, the information about
answer consistency serves as an important indication of data quality and
reliability.



In [4] we formalized the notion of consistent query answer as an answer
true in every minimal repair. Here, we introduce a modal operator K with
the meaning that Ka is true in a relational database instance r if « is true
in all minimal repairs of r. We show how to evaluate first-order queries in
which the operator X occurs (we call them K-queries for short). The basic
insight is that the (minimal) repairs of a given instance r correspond to the
e-answer sets of a logic program with exceptions II". For this purpose, we
introduce disjunctive extended logic programs with exceptions that general-
ize those introduced in [21]. Our programs contain strong and procedural
negation, disjunctive heads, and both negative and positive exceptions to
positive and negative defaults, resp. As the programs in [21], they can be
transformed into disjunctive extended logic programs as presented in [18]. In
consequence, any evaluation method for our logic programs with exceptions
(e.g., by using an ad hoc evaluator!, or by transforming them to disjunctive
extended logic programs [18] and evaluating those) can be combined with
some standard evaluation method for first-order queries (e.g., by translating
them to relational algebra or SQL) to yield a method for evaluating K-queries.
Computational implementations for evaluating extended logic programs exist
[9,26,14,15].

In [4] we proposed a different method for obtaining consistent query an-
swers by transforming given queries using the techniques of semantic query
optimization. Unfortunately, the scope of that method is quite limited: Queries
cannot contain quantifiers or disjunction and the classes of integrity con-
straints allowed are also severely restricted. The present method does not
have such limitations: It handles arbitrary first-order queries with the K
operator and arbitrary universally quantified integrity constraints (and also
some existential cases). On the other hand, it requires a much more powerful
evaluation mechanism than the approach of [4], that relies on the standard
evaluation mechanism for relational queries and can be implemented on top
of any relational DBMS [8].

The plan of the paper is as follows. In section 2 we define the basic no-
tions of our approach, including those of a database repair and consistent
query answer. In section 3 we summarize the framework of logic programs
with exceptions as presented in [21]. In section 4 we show several examples
of the correspondence between database repairs and e-answer sets of logic
programs with exceptions. In section 5 we present a general methodology to
derive repair programs from sets of universally-quantified constraints. There
we also introduce disjunctive extended logic programs with exceptions and
their semantics based on e-answer sets. In section 6 we consider consistent
query evaluation. In section 7 we consider possible extensions of the specifi-
cation formalism and alternatives. In section 8 we briefly summarize related
work. We conclude by outlining further work in section 9.

! We implemented in XSB [28], EAnswers, our own evaluator for disjunctive ex-
tended logic programs with exceptions.



2 Consistent Query Answers

We assume a fixed set, IC, of integrity constraints associated with a fixed
relational database schema. We also have a fixed, possibly infinite, database
domain D. A database instance is a structure over D, consisting of a collec-
tion of finite extensions for the predicates in the database schema. Built-in
predicates may have an infinite, but fixed extension in each database instance.
A database instance r is consistent if it satisfies IC, that is r F IC. Otherwise,
we say that r is inconsistent. We assume that IC is consistent in the sense
that there is a database instance r that satisfies IC.

If r is inconsistent, its repairs are database instances (with respect to the
same schema and domain) that, each of them, satisfy IC and differ from r by
a minimal set (wrt to set inclusion) of inserted or deleted tuples.

Ezample 2. Consider the functional dependency P(z,y,2) A P(z,u,v) =
y = u, and the inconsistent database instance r with the table P = {(a, 1, 5),
(a,2,6),(a,1,7)}. This instance has two possible repairs, r1,r2, with tables

P ={(a,1,5),(a,1,7)} and P> = {(a,2,6)}, respectively. O
The syntax of first-order queries (termed basic queries here) is defined by
the following grammar: B == Atom | BA B | —B | 3z B. The syntax of

K-queries is similarly defined: A ::= KB|AAA|-A|3z. A

We say that a ground query Kq is true in an instance r wrt IC, in symbols
r F Ka, if the query a is true in every repair r' of r wrt IC, in symbols r' F a.
The semantics of the remaining constructs is the standard semantics of first-
order logic. A tuple % is an answer to a K-query Q(Z) in r if r £ KQ(f). A
tuple % is a consistent answer to a basic query Q(Z) in r wrt ICif r £ KQ(¥).

Ezample 3. (example 2 continued) The query Q(z): JyIzP(z,y,z) hasa as
a consistent answer: 7 = KQ(a). On the other hand, the query 3z32P(z, 1, 2)
has no consistent answers, because ry ¥ Ix3zP(x,1, 2). |

As we have seen, consistent answers to first-order queries are a special case
of answers to K-queries. Thus, the method to compute the latter presented
in this paper is automatically applicable to computing the former.

3 Logic Programs with Exceptions

In [21], Kowalski and Sadri introduced logic programs with exceptions (LPe).
These are programs with the syntax of an extended logic program (ELP)
[17,18], that is, in them we may find rules with both logical (or strong)
negation (—) and procedural negation (not) [25]. In these programs, rules
with a positive literal in the head represent a sort of general defaults, whereas
rules with a logically negated head represent exceptions.

Since general defaults and exceptions may contradict each other, the se-
mantics of ELPs has to be changed in order capture the intuition that ex-
ceptions have higher priority than defaults. This solves the contradictions at
the semantical level. In order to capture the new semantics at the procedural
level, an LPe is transformed into a new ELP, with its usual semantics [22].



As indicated in [21] and shown in [17,18], the extended logic program can be
further transformed into an equivalent normal logic program (without logical
negation), with a stable model semantics [16].

Now we will give a brief account of logic programs with exceptions. An
LPe consists of clauses of the form

Ly <— Li,...,Lg, not Lgyq,..., not Ly, (1)

where each L; is a literal, that is, an atom or a logically negated atom, —A.
Rules or defaults are clauses with a positive head. The exceptions are the
clauses with a negative head.

Example 4. The following is a logic program with exceptions

fly(z) +— bird(x) (2)
—fly(y) «— y = emu 3)

As we can see, with the fact bird(emu), unless we assign to the program
an appropriate semantics (or evaluate it in a proper way), we will obtain
a contradiction. The semantics should sanction (3) as an exception to the
default rule (2). O

The semantics of an LPe is obtained from the semantics for ELPs, by
adding an extra condition that assigns higher priority to exceptions. Next we
review the definition of the semantics for LPe’s as presented in [21].

Let Lit be the set of ground literals, and II be a program consisting
of ground clauses of the form (1), but without not. The answer set of II,
denoted as(IT), is the smallest subset S of Lit, such that: (a) For any clause
Ly «— Ly,...,Ly,if Ly,... ,Ly € S, then also Ly € S. (b) If S contains
a pair of complementary literals, then S = Lit. In this case, II is said to be
contradictory.

Now, consider a ground LPe, IT, with clauses as in (1). Let S be a subset
of Lit. We define a new program, °II, obtained from IT and S as follows:

1. Delete every clause containing a condition not L, with L € S.
2. Delete in the remaining clauses every condition not L if L ¢ S.
3. Delete every clause having a positive conclusion L, with =L € S.

The resulting program “IT is a ground ELP without not . In consequence,
as(°II) is defined. We say that a set S of ground literals is an e-answer set
for II, the original LPe, if S = as(°II). It can be shown [21,22] that e-answer
sets are in correspondence with answer sets of extended logic programs. This
can be established by transforming the original LPe into an ELP with the
answer set semantics. Among other transformation rules, a positive default
rule of the form P(f) «— C, if there is a negative exception clause of the
form —P(t') <— B, is transformed into the clause

[P(#) +— C,not ~P(#')]6, (4)

where 6 is mgu of ¢ and t'.



In this way we obtain an ELP in which the original exceptions remain
as ordinary clauses of the new ELP, but are no longer exceptions in the
sense that they have already generated extra conditions in the bodies of the
corresponding rules. In this way, contradictions are avoided. The resulting
extended logic program II; can be evaluated as any extended logic program
[22].

4 Specifying Database Repairs

Our approach here consists in the direct specification of the database re-
pairs in a logic programming formalism. We expect the database repairs to
correspond to the intended models of the program.

In general, given a predicate P, for a table of a database instance r, that
participates in some of the ICs, we will introduce a new predicate P’ that
should be the repaired version of predicate P, that is the one that contains
the tuples corresponding to P in a repair of the original database.

Ezample 5. Consider the functional dependency FD: P(z,y) A P(z,2) =
y = z, and the inconsistent database instance r = {P(a,b), P(a,c), P(c,a)}.

We introduce a new predicate P’'. By default, P’ contains what is con-

tained in P. This generates the (default) rule:

P'(z,y) <— P(z,y). (5)

Now, FD is logically equivalent to P(x,y) Ay # z = —P(z,z2). From it we
obtain the exception:

=P'(u,v) «— P'(u,2),~v=z. (6)

Clauses (5) and (6), together with the facts, P(a,b),P(a,c),P(c,a), and
the clauses for equality (treated as exceptions, because they are not defea-
sible), -z =y « not x =y and =z = =z, constitute a logic program
with exceptions, II", that specifies the repaired predicate P'. Notice that
there may be contradictions between clauses (5) and (6) if they are treated
as usual.

Running EAnswers, our e-answer sets generator and checker, on this pro-
gram, we obtain as only e-answer sets

S1 = {-P'(a,b), P'(a,c), P'(c,a), P(a,b), P(a,c), P(c,a),a = a,b =b,c = c,
—a =b,—b=a,-a=c,~c=a,~b=c,~c=b,~P'(a,a),~P'(c,b),
P(e,0)}

Sy = {P'(a,b),—P'(a,c), P'(c,a), P(a,b), P(a,c), P(c,a),a = a,b=b,c = c,
—a =b,—b=a,-a=c,—c=a,~b=c,~c=b,~P(a,a),~P'(c,b),
-P'(c,c)}

Considering only the P’ atoms in each of these e-answer sets, we obtain
{P'(a,c), P'(c,a)} and {P'(a,b), P'(c, a)}, corresponding to the two expected



database repairs, namely r; = {P(a,c), P(c,a)} and ro = {P(a,b), P(c,a)},
resp.

Ezample 6. Consider now the inclusion dependency ID: P(z) = Q(z), and
the inconsistent database instance r = {P(a)}. As in the previous example, in
order to specify the database repairs, we introduce new predicates P', )’ and
the following four (default) rules expressing that P’ and @' contain exactly
what P and @ contain, resp.: P'(z) + P(z); Q'(z) + Q(z); ~P'(z) «
not P(z); and —Q'(z) < not Q(x).

Now, ID generates two clauses: Q'(z) < P'(z) and —P'(u) « —Q'(u).
The first one is a rule’ and the second one, an exception. These clauses
plus the fact P(a) constitute the repair logic program with exceptions,
II". In this case, FAnswers gives us the following e-answer sets: S; =
{=P'(a),~Q'(a), P(a)} and Sy = {P'(a),Q’'(a), P(a)}, corresponding to the
two expected repairs, namely the empty set and {P(a),Q(a)}. O

There are cases where an integrity constraint can not be fully captured by
the logic programs with exceptions as we presented them. The reason is that
they do not generate any exception clause. Although those constraints may
not be of much interest in practice, we still are in position to accommodate
them in a natural way by making the ICs generate positive exceptions to rules
with negative heads. This is illustrated in the following example.

Ezample 7. Consider the IC: z = a = P(z), that forces P(a) to hold®. In
this case, no exception clause is generated. Now, the logic program, that does
not have any facts, consists of the definition of equality plus the clauses

P'(z) +— P(), (7)
P'(z) +— z =a, (8)
-P'(z) +— not P'(z). 9)

The third rule corresponds to the closed world assumption for P’. If we treat
(7) and (8) as defaults and (9) as an exception, it is easy to check that this
program has { P'(a),a = a} as an e-answer set, corresponding to the expected
repair, but also has {—-P'(a),a = a} as an e-answer set, which does not
correspond to a database repair. The reason is that, from the corresponding
ground program, the IC (8) is removed.

Nevertheless, as pointed out in [22], it is possible to extend the logic
programs with exceptions in such a way that they include positive exceptions,
in this case, (8), to a negative (default) rule, in this case, (9). We have to
change the transformation rule 3. in section 3 used to check e-answer sets
as follows: 3’ Delete every clause having a megative conclusion —L, with
L e S. With it, {P'(a),a = a} is still an e-answer set, but {—P'(a),a = a} is
nat.

% Later on, we will see that we can (and usually need to) treat it as positive
exception.

3 ICs of this form, that generate knowledge about specific values, had already been
discarded as problematic and non interesting in [4,8].



5 General Approach

So far, we have presented some particular examples of ICs. We have also
shown that sometimes negative exceptions are needed, in other occasions
positive exceptions are needed.

We have also considered single ICs. The most natural way of dealing with
multiple integrity constraints consists of repeating the construction of the
repair logic program for every constraint separately and taking the union of
the results. Unfortunately, this does not work in general. However, under the
additional assumption that the constraints are closed under resolution [25)
this approach does work. In addition, as we will see in the next example, the
techniques we have used so far do not give an account of simple examples of
ICs.

Ezample 8. Consider the set of integrity constraints IC = {-P(z) V Q(z),
~P(2)vV-Q(z), -Q(2)VR(z), ~Q(z)V-R(x), ~R(z)VP(z), ~R(z)V-P(z)},
and the database instance {P(a), Q(a), R(a)}. This set of ICs is equivalent
to the formula —P(x) A =Q(x) A —=R(z). In this latter form, the IC can be
treated with the techniques used in previous examples, but not in its original
version, where the information about —P(z) A =Q(z) A ~R(z) is hidden. In
this case, the only expected repair is the empty database instance, that is
{=P(a),~Q(a), ~R(a)}.

A natural candidate to be a repair program contains the persistence de-
faults P'(z) < P(z), -P'(z) « not P(z), etc., plus both positive and
negative exceptions (that block the negative and positive defaults, resp.)
derived from IC. For example, for the first constraint the exceptions are
-P'(z) + -Q'(z) and Q'(z) « P'(z). In this case, we do not obtain
S ={P(a), Q(a), R(a), ~P'(a), 7Q’'(a), ~R'(a)} as an e-answer, that corre-
sponds to the only repair. The reason is that, with S, the persistence defaults
cannot be used and then, there are no facts to apply the exceptions, without
getting the empty set of primed literals as the only minimal model. A way of
connecting persistence defaults and exceptions is missing. For this purpose,
we will introduce triggering exceptions below. O

In this section we will present a general framework for generating repair
programs with exceptions that can handle multiple constraints in the the
so-called “standard format” (see below). The resulting programs will have
both negative and positive exceptions, strong and procedural negations, and
disjunctions of literals in the heads of some of the clauses; that is, they will
be disjunctive extended logic programs [18] with exceptions.

As in [4], we consider a set of integrity constraints, IC, written in the
standard format

Viey Pi(@:) V VL, —Qi(5i) V o, (10)

where ¢ is a formula containing only built-in predicates, and there is an
implicit universal quantification in front.



In order to specify the repairs of the database, r, by means of a logic pro-
gram with exceptions, IT", we introduce a new predicate P’ for each database
predicate P, and replace the Ps by the P's in (10).

a. Persistence Defaults For each base predicate P, introduce the persis-
tence defaults:

P'(z) «+— P(z) (11)
~P'(z) «— not P(z). (12)

The rules of type (11) will be subject to negative exceptions, and the rules
of type (12) will be subject to positive exceptions.

b. Stabilizing Exceptions From each IC (10) we generate for each negative
literal —@Q;, in it, the negative exception clause:

_'Q;O (g’io) — /\?:1 _"P’il(:z.i)a /\i;ﬁio Q;(:‘L)a@; (13)

where @ is a formula that is logically equivalent to the logical negation of .
Similarly, for each positive literal P;, in (10), generate the positive excep-
tion clause:

P (Zi)) «— Nigi, ~Pi(@:), Ni2, Qi(3:), P (14)

These exceptions may override the persistence stated in the defaults above.
Their role is to make the ICs be satisfied by the new predicates. Nevertheless,
with only these exceptions we are not in position to ensure that the changes
that the original predicates should be subject to in order to restore con-
sistency are propagated to the new predicates. We need special exceptions
to trigger the first changes, from the P;s to the P]fs; next, the stabilizing
transactions propagate all the required changes.

c. Triggering Exceptions From (10), produce the disjunctive exception
clause:

Vi Pi(z:) vV VL, ~Qi(F:) «— Nizy not Pi(%:), N2y Qi(7:), 3, (15)

Finally, we add facts corresponding to the original database and rules
for the built-ins if necessary. We call a program II" constructed as shown
above a “(disjunctive extended) repair logic program with exceptions for the
database instance r”.

It is not difficult to extend the semantics, transformation and results
presented in [21] for our repair programs. All we need to do is realize that
positive defaults are blocked by negative conclusions, and negative defaults,
by positive conclusions. Notice that clauses like (15) will be exceptions, then
we do not need to worry about the way disjunctive conclusions obtained from
them are blocked by exceptions.

For example, the rule 3. in the e-answer set semantics in section 3 should
be changed to: 8”. Delete every (positive) default having a positive conclusion



L, with =L € S; and every (negative) default having a negative conclusion
-L, with L € S. In this way we obtain an extended e-answer semantics:
having applied pruning rules 1., 2. (of section 3) and 3”., we are left with a
ground disjunctive logic program without not . If the candidate set S is one
of the minimal models of this program [18], then we say that S is an e-answer
set.

With respect to the transformation to obtain an extended disjunctive logic
program (without exceptions), we do not need to change anything wrt what
we had before, except, as suggested by (4), qualify the negative defaults (12)
as follows: —P'(Z) «— not P(Z),not P'(Z).

It can be proved that the e-answer sets of the disjunctive extended repair
program with exceptions correspond, via the positive primed predicates P;,
to the repairs of r. Notice that the non primed parts of the e-answer sets
(in terms of the original P predicates) coincide with the original database.
This is because there is no rule in the repair program to modify the original
predicates.

Ezample 9. (example 6 continued) With the new treatment, the resulting
repair program has the stabilizing exceptions Q'(z) « P'(z), -P'(z) «+
=Q'(x), the triggering exception —=P'(z) V Q'(z) < P(z), not Q(z); and the
default rules P'(z) « P(z), ~P'(z) < not P(z), Q'(z) + Q(x), Q' (x) +
not Q(x). With the original instance (facts) P(a), the e-answer sets are
{=P'(a),~Q'(a), P(a)} and {P'(a), Q'(a), P(a)}, that correspond to the two
expected database repairs.

Ezample 10. (example 8 continued) Apart from all the defaults and excep-
tions already introduced, it is necessary to introduce the disjunctive triggering
exceptions. For example, for the first two constraints in IC, they are —P'(z)V
Q'(z) «+ P(z), not Q(x) and —P'(z)V-Q'(z) « P(z), Q(z). In this case,
the only e-answer set is {P(a), Q(a), R(a),~P'(a),~Q’'(a),~R'(a)}, that cor-
responds to the only database repair.

Theorem 1. For a set of domain independent binary integrity constraints
IC of the form (10) and o database instance r, there is a one to one cor-
respondence between the e-answers sets of the repair program II" and the
repairs of r. O

By a domain independent constraint [30] we understand that the con-
straint can be checked wrt satisfaction by looking to the finite active domain
(plus possibly to the constants mentioned in the ICs). If we allow non domain
independent ICs, then all repairs will be obtained as e-answer sets, but it may
happen that an e-answer set of the program, even being minimal and satis-
fying IC, is not a repair in the sense that it assigns an infinite extension to
some database predicates. This is the case of the IC Vz (Q(a)V P(z)) on the
database with empty tables (but still with an infinite domain D). According
to the definition of repair, the only repair is {Q(a)}, but the other e-answer
set that can be obtained from the program and makes P true of all elements
in D is not a repair (because the extension of P is infinite).



All these problems are avoided assuming the the domain independence of
the set IC.

By a binary integrity constraint we mean an IC like (10) where at most
two literals L; appear (but extra built-ins are allowed). This covers most
cases of interesting ICs.

6 Evaluating K-queries

The results in section 5 provide the underpinning of a general method of
evaluating K-queries. Assume 7 is a database instance and the set of integrity
constraints IC'is given. We show how to evaluate queries of the form 8 = Ka
where « is a basic query. First, from a we obtain a stratified logic program
P, (this is a standard construction) in terms of the new, primed predicates.
One of the predicate symbols, @), of P, is designated as the query predicate:
its extension is the answer to «a in r. Second, determine all the e-answers sets
S1,--., Sk of the logic program with exceptions P, UII". Third, compute the
intersection rg = ();<;<p Si/Qa, Where S;/Q, is the extension of @, in S;.
The set of tuples r is the set of answers to 3 in r. To obtain query answers to
general K-queries the above method needs to be combined with some method
of evaluating first-order queries. For example, safe-range first-order queries
[1] can be translated to relational algebra. The same approach can be used
for I queries with the subqueries of the form Ka replaced by new relation
symbols. Then when the resulting relational algebra query is evaluated and
the need arises to materialize one of the new relations, the above method can
be used to accomplish that goal.

7 Extensions and Alternatives

The approach proposed in section 5 also works for classes of ternary ICs, like
a transitivity constraint, P(z,y) A P(y,z) — P(z, 2).

Nevertheless, there are rather artificial examples of ternary ICs for which

the repair program does provide repairs (it can be proved that the method-
ology is always sound), but some repairs are missed.
Ezample 11. Consider the DB instance r = {P(a), Q(a), R(a)} and the fol-
lowing set of integrity constraints IC = {-P(z) V -Q(z) V ~R(z),~P(x) V
=Q(z) V R(z),~P(z) V Q(z) V ~R(z), P(z) V ~Q(z) V ~R(z), ~P(z) v Q(z) V
R(z),P(z)V-Q(z)VR(z), P(x)VQ(z)V-R(z)}. In this case, the repair pro-
gram obtained by applying the methodology introduced in section 5 contains
the usual persistence defaults plus triggering exceptions, e.g.

~P'(z) V-Q'(z) V ~R'(z) +— P(x),Q(z), R(), (16)
and stabilizing exceptions, e.g.
~P'(z) «— Q'(2), R'(z), ~R'(z) +— ~P'(2),Q'(2), (17)

etc. In this case we do not obtain any stable models, that is, the only repair,
the empty instance, is missed. m|



The methodology can be extended to cover more general ICs in stan-
dard format, like ternary constraints. Nevertheless, in order to simplify the
presentation, we decided to present it as in section 5. The other reason for
proceeding this way has to do with efficiency. Actually, in order to make it
work for an arbitrary number of literals in the ICs, we have to add to the
stabilizing constraints like (13), new clauses with disjunctive heads; one for
each combination of two literals in the head, one for each combination of
three literals in the head, etc. Unfortunately all this makes the length of the
program grow exponentially.

Ezample 12. (example 11 continued) We keep all the rules appearing in ex-
ample 11, e.g. (16), (17), but we add the new stabilizing exceptions

~P'(z) V =Q'(x) «— R'(x), (18)

etc. In this case we obtain as the only e-answer set, the empty instance, that
is, the only repair. O

Finally, there is an alternative way of specifying database repairs by means
of disjunctive logic programs with exceptions. A detailed analysis is left for
future work. Here we just show it by means of example 11.

Ezample 13. (example 11 continued) The persistence and triggering rules are
as in example 11, but the stabilizing exceptions are changed by introducing
procedural negation in the bodies, obtaining, e.g.

-P'(z) +— not =Q'(x), not ~R'(xz), -R'(z)«— not P'(z),not -Q’'(x),

instead of (17), resp. In this case we obtain as the only e-answer set the only
repair, that is, the empty instance.

Now we do obtain the right result in comparison to example 11 and the
program is much shorter than the program in example 12, actually, the length
of the program is linear in the size of the set of integrity constraints plus the
database. m|

The methodology presented in section 5 can be applied to ICs that are
not in standard format. The most interesting case corresponds to a referential
IC.

Ezample 1. Consider a referential constraint RIC: P(x) — Jy R(z,y),
and the inconsistent database instance r = {P(a), P(b), R(b,a)}. For things
to work properly, we need to assume that there is an underlying database
domain D = {a,b}. The repair program has the persistence default rules
P'(z) « P(z); —P'(z) + not P(z); R'(z,y) + R(z,y); and —~R'(z,y) «
not R(z,y). In addition, it has the stabilizing exceptions

-P'(z) +— —auzl(z), R (x, null), (19)
auzl(z) «+— R'(z,vy),



R'(z, null) +— P'(z), not auzl(x); (20)

and the triggering exception —P'(z)V R'(z, null) < P(z), not auz2(x), with
auz2(z) + R(z,y).

The variables in this program range over D, that is, they do not take
the value null. This is the reason for the last literal in clause (19). The last
literal in clause (20) is necessary to insert a null value only when it is needed;
this clause relies on the fact that variables range over D only. Instantiating
variables on D only*, the only two e-answer sets are the expected ones, namely
delete P(a) or insert R(a, null).

8 Related Work

The semantics underlying our notion of consistent query answers comes from
the area of belief revision. More precisely, such answers are the same as the
answers obtained from a relational database revised with integrity constraints.
Our notion of minimal change is equivalent to that of Satoh [29]. There are,
however, several important differences between our work and past work on
belief revision. Typically, belief revision considers revising a propositional
theory with a propositional formula [20,12]. In our case we revise a single
first-order structure (a database instance) with a first-order formula, often of
a very restricted kind (e.g., functional dependencies). The program II™ may
be viewed as a representation of the revised database. However, the revised
database is not explicitly constructed. Instead the program II" is used to
answer queries to the revised database.

Bry [7] was, to our knowledge, the first author to consider the notion
of consistent query answer in inconsistent databases. He defined consistent
query answers using provability in minimal logic. The proposed inference
method is nonmonotonic, but fails to capture minimal change. Moreover,
Bry’s approach is entirely proof-theoretic and does not provide a computa-
tional mechanism to obtain consistent query answers, except in the proposi-
tional case.

It has been widely recognized that in database integration the integrated
data may be inconsistent with the integrity constraints. A typical (theoreti-
cal) solution is to augment the data model to represent disjunctive informa-
tion. [2,5,10,24]. There are several important differences between the above
approaches and ours. First, they rely on the construction of a single (dis-
junctive) instance and the deletion of conflicting tuples. Second, they usually
handle severely restricted classes of integrity constraints and queries.

Gertz [19] describes techniques and algorithms for computing repairs of
single constraint violations. The issue of query answering in the presence of
an inconsistency is not addressed in his work.

4 A simple way to enforce this at the object level is to introduce the predicate D in
the clauses, to force variables to take values in D only, excluding the null value.



9 Conclusions and Further Work

There are other logic programming formalisms that allow some forms of rea-
soning in the presence of inconsistency that could be used in principle for our
task of reasoning about database repairs. For example, the symmetric logic
programs introduced in [27] might work. They also allow monotonic nega-
tion and their semantics is also based on a modification of the stable model
semantics. Nevertheless, these programs have an operator for representing
assumptions, that can be used to qualify the literals in the body of a clause.

We know that the logic programs with exceptions that specify the database
repairs eventually lead to disjunctive logic programs with a stable model se-
mantics. It would be interesting to examine in a more detailed manner what
kind of programs we eventually obtain, depending on the kind of integrity
constraints; the fact that the repair programs follow a rather fixed format, in
particular, most of it has to do with the information in the original database
instance; and the fact that we can express the closed world assumption for
every database predicate. Depending on the peculiarities of the resulting pro-
gram, specialized computation methods could be used.

In particular, it is interesting to investigate if our repair programs can be
eventually transformed into (non disjunctive) normal programs. Cases where
this can be achieved have been investigated in [6,23]. The idea is to push
in turn all but one of the disjuncts in the head of a clause to the body
preceded by a procedural negation not . As studied in [13] this reduction
is not always possible®. Actually, example 10 cannot be treated in this way,
by transforming, e.g. its first disjunctive clause, into the two clauses p' +
not p,not q,not ¢ and ¢ < not p,not q,not p'; disjunctive heads are
needed.

We are currently exploring the possibilities of existing implementations
of stable model semantics for normal logic programs in combination with
database management systems to compute consistent answers. Actually, once
the repair program is transformed into a disjunctive extended program with
the stable model semantics, we can benefit from implementations like DLV
[14,15]. We have successfully ran our examples on DLV. To make it efficient
in real database applications, it would be necessary to have the possibilities
of handling non ground queries and computing the consistent core of the
database, that is, the intersection of the repairs (or stable models). In [3], it
is described how to take advantage of core computations to obtain consistent
answers to aggregate queries in inconsistent databases.

The treatment of existential constraints, like referential integrity con-
straints (see example 14), requires further analysis and implementation. Ac-
tually, DLV has also been useful in treating referential constraints. With it,
it is possible, with a suitable representation of ICs, to impose preferences

% For example, the disjunctive logic program pV p <, has {p} as a stable model,
whereas the transformed program p < not p does not have {p} as a stable
model.



on possible repairs, for example, the alternative of repairing the database by
introducing null values can be blocked if this is considered undesirable or less
desirable than the cascade elimination of tuples. Further experiments and
implementations with DLV are also left for future work.
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