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Abstract
Knowledge base exchange is an important problem
in the area of data exchange and knowledge rep-
resentation, where one is interested in exchanging
information between a source and a target knowl-
edge base connected through a mapping. In this pa-
per, we study this fundamental problem for knowl-
edge bases and mappings expressed in OWL 2 QL,
the profile of OWL 2 based on the description logic
DL-LiteR. More specifically, we consider the prob-
lem of computing universal solutions, identified as
one of the most desirable translations to be ma-
terialized, and the problem of computing UCQ-
representations, which optimally capture in a target
TBox the information that can be extracted from a
source TBox and a mapping by means of unions of
conjunctive queries. For the former we provide a
novel automata-theoretic technique, and complex-
ity results that range from NP to EXPTIME, while
for the latter we show NLOGSPACE-completeness.

1 Introduction
Complex forms of information, maintained in different for-
mats and organized according to different structures, often
need to be shared between agents. In recent years, both in
the data management and in the knowledge representation
communities, several settings have been investigated that ad-
dress this problem from various perspectives: in informa-
tion integration, uniform access is provided to a collection of
data sources by means of an ontology (or global schema) to
which the sources are mapped [Lenzerini, 2002]; in peer-to-
peer systems, a set of peers declaratively linked to each other
collectively provide access to the information assets they
maintain [Kementsietsidis et al., 2003; Adjiman et al., 2006;
Fuxman et al., 2006]; in ontology matching, the aim is to un-
derstand and derive the correspondences between elements in
two ontologies [Euzenat and Shvaiko, 2007; Shvaiko and Eu-
zenat, 2013]; finally, in data exchange, the information stored
according to a source schema needs to be restructured and
translated so as to conform to a target schema [Fagin et al.,
2005; Barceló, 2009].

The work we present in this paper is inspired by the lat-
ter setting, investigated in databases. We study it, how-

ever, under the assumption of incomplete information typical
of knowledge representation [Arenas et al., 2011]. Specif-
ically, we investigate the problem of knowledge base ex-
change, where a source knowledge base (KB) is connected
to a target KB by means of a declarative mapping speci-
fication, and the aim is to exchange knowledge from the
source to the target by exploiting the mapping. We rely
on a framework for KB exchange based on lightweight De-
scription Logics (DLs) of the DL-Lite family [Calvanese
et al., 2007], recently proposed in [Arenas et al., 2012a;
2012b]: both source and target are KBs constituted by a DL
TBox, representing implicit information, and an ABox, rep-
resenting explicit information, and mappings are sets of DL
concept and role inclusions. Note that in data and knowledge
base exchange, differently from ontology matching, map-
pings are first-class citizens. In fact, it has been recognized
that building schema mappings is an important and complex
activity, which requires the designer to have a thorough un-
derstanding of the source and how the information therein
should be related to the target. Thus, several techniques and
tools have been developed to support mapping design, e.g.,
exploiting lexical information [Fagin et al., 2009]. Here, sim-
ilar to data exchange, we assume that for building mappings
the target signature is given, but no further axioms constrain-
ing the target knowledge are available. In fact, such axioms
are derived from the source KB and the mapping.

We consider two key problems: (i) computing universal
solutions, which have been identified as one of the most desir-
able translations to be materialized; (ii) UCQ-representability
of a source TBox by means of a target TBox that captures at
best the intensional information that can be extracted from
the source according to a mapping using union of conjunc-
tive queries. Determining UCQ-representability is a crucial
task, since it allows one to use the obtained target TBox to
infer new knowledge in the target, thus reducing the amount
of extensional information to be transferred from the source.
Moreover, it has been noticed that in many data exchange ap-
plications users only extract information from the translated
data by using specific queries (usually conjunctive queries),
so query-based notions of translation specifically tailored
to store enough information to answer such queries have
been widely studied in the data exchange area [Madhavan
and Halevy, 2003; Fagin et al., 2008; Arenas et al., 2009;
Fagin and Kolaitis, 2012; Pichler et al., 2013]. For these
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two problems, we investigate both the task of checking mem-
bership, where a candidate universal solution (resp., UCQ-
representation) is given and one needs to check its correct-
ness, and non-emptiness, where the aim is to determine the
existence of a universal solution (resp., UCQ-representation).

We significantly extend previous results in several direc-
tions. First of all, we establish results for OWL 2 QL [Motik
et al., 2012], one of the profiles of the standard Web Ontology
Language OWL 2 [Bao et al., 2012], which is based on the
DL DL-LiteR. To do so, we have to overcome the difficulty
of dealing with null values in the ABox, since these become
necessary in the target to represent universal solutions. Also,
for the first time, we address disjointness assertions in the
TBox, a construct that is part of OWL 2 QL. The main contri-
bution of our work is then a detailed analysis of the computa-
tional complexity of both membership and non-emptiness for
universal solutions and UCQ-representability. For the non-
emptiness problem of universal solutions, previous known re-
sults covered only the simple case of DL-LiteRDFS , the RDFS
fragment of OWL 2 QL, in which no new facts can be in-
ferred, and universal solutions always exist and can be com-
puted in polynomial time via a chase procedure (see [Cal-
vanese et al., 2007]). We show that in our case, instead, the
problem is PSPACE-hard, hence significantly more complex,
and provide an EXPTIME upper bound based on a novel ap-
proach exploiting two-way alternating automata. We provide
also NP upper bounds for the simpler case of ABoxes with-
out null values, and for the case of the membership problem.
As for UCQ-representability, we adopt the notion of UCQ-
representability introduced in [Arenas et al., 2012a; 2012b]
and extend it to take into account disjointness of OWL 2 QL.
For that case we show NLOGSPACE-completeness of both
non-emptiness and membership, improving on the previously
known PTIME upper bounds.

The paper is organized as follows. In Section 2, we give
preliminary notions on DLs and queries. In Section 3, we
define our framework of KB exchange and discuss the prob-
lem of computing solutions. In Section 4, we overview our
contributions, and then we provide our results on computing
universal solutions in Section 5, and on UCQ-representability
in Section 6. Finally, in Section 7, we draw some conclusions
and outline issues for future work.

The proofs are available in an extended technical report
accessible at http://arxiv.org/abs/1304.5810.

2 Preliminaries

The DLs of the DL-Lite family [Calvanese et al., 2007] of
light-weight DLs are characterized by the fact that standard
reasoning can be done in polynomial time. We adapt here
DL-LiteR, the DL underlying OWL 2 QL, and present now
its syntax and semantics. Let NC , NR, Na, N` be pairwise
disjoint sets of concept names, role names, constants, and
labeled nulls, respectively. Assume in the following that A ∈
NC and P ∈ NR; in DL-LiteR, B and C are used to denote
basic and arbitrary (or complex) concepts, respectively, and
R and Q are used to denote basic and arbitrary (or complex)
roles, respectively, defined as follows:

R ::= P | P−
Q ::= R | ¬R

B ::= A | ∃R
C ::= B | ¬B

From now on, for a basic role R, we use R− to denote P−
when R = P , and P when R = P−.

A TBox is a finite set of concept inclusions B v C and
role inclusions R v Q. We call an inclusion of the form
B1 v ¬B2 or R1 v ¬R2 a disjointness assertion. An ABox
is a finite set of membership assertions B(a), R(a, b), where
a, b ∈ Na. In this paper, we also consider extended ABoxes,
which are obtained by allowing labeled nulls in membership
assertions. Formally, an extended ABox is a finite set of mem-
bership assertionsB(u) andR(u, v), where u, v ∈ (Na∪N`).
Moreover, a(n extended) KB K is a pair 〈T ,A〉, where T is a
TBox and A is an (extended) ABox.

A signature Σ is a finite set of concept and role names. A
KB K is said to be defined over (or simply, over) Σ if all the
concept and role names occurring inK belong to Σ (and like-
wise for TBoxes, ABoxes, concept inclusions, role inclusions
and membership assertions). Moreover, an interpretation I
of Σ is a pair 〈∆I , ·I〉, where ∆I is a non-empty domain and
·I is an interpretation function such that: (1) AI ⊆ ∆I , for
every concept name A ∈ Σ; (2) P I ⊆ ∆I × ∆I , for ev-
ery role name P ∈ Σ; and (3) aI ∈ ∆I , for every constant
a ∈ Na. Function ·I is extended to also interpret concept and
role constructs:

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I such that (x, y) ∈ RI};
(P−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P I};
(¬B)I = ∆I \BI ; (¬R)I = (∆I ×∆I) \RI .

Note that, consistently with the semantics of OWL 2 QL, we
do not make the unique name assumption (UNA), i.e., we
allow distinct constants a, b ∈ Na to be interpreted as the
same object, i.e., aI = bI . Note also that labeled nulls are
not interpreted by I.

Let I = 〈∆I , ·I〉 be an interpretation over a signature Σ.
Then I is said to satisfy a concept inclusion B v C over Σ,
denoted by I |= B v C, if BI ⊆ CI ; I is said to satisfy
a role inclusion R v Q over Σ, denoted by I |= R v Q, if
RI ⊆ QI ; and I is said to satisfy a TBox T over Σ, denoted
by I |= T , if I |= α for every α ∈ T . Moreover, satisfaction
of membership assertions over Σ is defined as follows. A
substitution over I is a function h : (Na ∪ N`) → ∆I such
that h(a) = aI for every a ∈ Na. Then I is said to satisfy
an (extended) ABox A, denoted by I |= A, if there exists a
substitution h over I such that:

– for every B(u) ∈ A, it holds that h(u) ∈ BI ; and
– for every R(u, v) ∈ A, it holds that (h(u), h(v)) ∈ RI .

Finally, I is said to satisfy a(n extended) KB K = 〈T ,A〉,
denoted by I |= K, if I |= T and I |= A. Such I is called
a model of K, and we use MOD(K) to denote the set of all
models of K. We say that K is consistent if MOD(K) 6= ∅.

As is customary, given an (extended) KB K over a signa-
ture Σ and a membership assertion or an inclusion α over Σ,
we use notation K |= α to indicate that for every interpreta-
tion I of Σ, if I |= K, then I |= α.

2.1 Queries and certain answers
A k-ary query q over a signature Σ, with k ≥ 0, is a func-
tion that maps every interpretation 〈∆I , ·I〉 of Σ into a k-ary
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relation qI ⊆ (∆I)k. In particular, if k = 0, then q is said
to be a Boolean query, and qI is either a relation containing
the empty tuple () (representing the value true) or the empty
relation (representing the value false). Given a KB K over Σ,
the set of certain answers to q overK, denoted by cert(q,K),
is defined as:⋂
I∈MOD(K){(a1, . . . , ak) |

{a1, . . . , ak} ⊆ Na and (aI1 , . . . , a
I
k ) ∈ qI},

Notice that the certain answer to a query does not contain
labeled nulls. Besides, notice that if q is a Boolean query,
then cert(q,K) evaluates to true if qI evaluates to true for
every I ∈ MOD(K), and it evaluates to false otherwise.

A conjunctive query (CQ) over a signature Σ is a formula
of the form q(~x) = ∃~y. ϕ(~x, ~y), where ~x, ~y are tuples of vari-
ables and ϕ(~x, ~y) is a conjunction of atoms of the form A(t),
with A a concept name in Σ, and P (t, t′), with P a role name
in Σ, where each of t, t′ is either a constant from Na or a
variable from ~x or ~y. Given an interpretation I = 〈∆I , ·I〉
of Σ, the answer of q over I, denoted by qI , is the set of tu-
ples ~a of elements from ∆I for which there exist a tuple ~b
of elements from ∆I such that I satisfies every conjunct in
ϕ(~a,~b). A union of conjunctive queries (UCQ) over a signa-
ture Σ is a formula of the form q(~x) =

∨n
i=1 qi(~x), where

each qi (1 ≤ i ≤ n) is a CQ over Σ, whose semantics is
defined as qI =

⋃n
i=1 q

I
i .

3 Exchanging OWL 2 QL Knowledge Bases
We generalize now, in Section 3.1, the setting proposed in
[Arenas et al., 2011] to OWL 2 QL, and we formalize in Sec-
tion 3.2 the main problems studied in the rest of the paper.

3.1 A knowledge base exchange framework for
OWL 2 QL

Assume that Σ1, Σ2 are signatures with no concepts or roles
in common. An inclusion E1 v E2 is said to be from Σ1 to
Σ2, if E1 is a concept or a role over Σ1 and E2 is a concept
or a role over Σ2. A mapping is a tupleM = (Σ1,Σ2, T12),
where T12 is a TBox consisting of inclusions from Σ1 to
Σ2 [Arenas et al., 2012a]. Recall that in this paper, we deal
with DL-LiteR TBoxes only, so T12 is assumed to be a set of
DL-LiteR concept and role inclusions. The semantics of such
a mapping is defined in [Arenas et al., 2012a] in terms of a
notion of satisfaction for interpretations, which has to be ex-
tended in our case to deal with interpretations not satisfying
the UNA (and, more generally, the standard name assump-
tion). More specifically, given interpretations I, J of Σ1 and
Σ2, respectively, pair (I,J ) satisfies TBox T12, denoted by
(I,J ) |= T12, if (i) for every a ∈ Na, it holds that aI = aJ ,
(ii) for every concept inclusion B v C ∈ T12, it holds that
BI ⊆ CJ , and (iii) for every role inclusion R v Q ∈ T12, it
holds that RI ⊆ QJ . Notice that the connection between the
information in I and J is established through the constants
that move from source to target according to the mapping. For
this reason, we require constants to be interpreted in the same
way in I and J , i.e., they preserve their meaning when they
are transferred. Besides, notice that this is the only restric-
tion imposed on the domains of I and J (in particular, we

require neither that ∆I = ∆J nor that ∆I ⊆ ∆J ). Finally,
SATM(I) is defined as the set of interpretationsJ of Σ2 such
that (I,J ) |= T12, and given a set X of interpretations of Σ1,
SATM(X ) is defined as

⋃
I∈X SATM(I).

The main problem studied in the knowledge exchange area
is the problem of translating a KB according to a mapping,
which is formalized through several different notions of trans-
lation (for a thorough comparison of different notions of so-
lutions see [Arenas et al., 2012a]). The first such notion
is the concept of solution, which is formalized as follows.
Given a mappingM = (Σ1,Σ2, T12) and KBs K1, K2 over
Σ1 and Σ2, respectively, K2 is a solution for K1 under M
if MOD(K2) ⊆ SATM(MOD(K1)). Thus, K2 is a solu-
tion for K1 underM if every interpretation of K2 is a valid
translation of an interpretation of K1 according to M. Al-
though natural, this is a mild restriction, which gives rise to
the stronger notion of universal solution. GivenM, K1 and
K2 as before, K2 is a universal solution for K1 under M
if MOD(K2) = SATM(MOD(K1)). Thus, K2 is designed
to exactly represent the space of interpretations obtained by
translating the interpretations of K1 underM [Arenas et al.,
2012a]. Below is a simple example demonstrating the notion
of universal solutions. This example also illustrates some is-
sues regarding the absence of the UNA, which has to be given
up to comply with the OWL 2 QL standard, and regarding the
use of disjointness assertions.

Example 3.1 Assume M = ({F (·), G(·)}, {F ′(·), G′(·)},
T12), where T12 = {F v F ′, G v G′}, and let K1 =
〈T1,A1〉, where T1 = {} and A1 = {F (a), G(b)}. Then
the ABoxA2 = {F ′(a), G′(b)} is a universal solution for K1

underM.
Now, if we add a seemingly harmless disjointness assertion

{F v ¬G} to T1, we obtain that A2 is no longer a universal
solution (not even a solution) for K1 under M. The reason
for that is the lack of the UNA on the one hand, and the pres-
ence of the disjointness assertion in T1 on the other hand. In
fact, the latter forces a and b to be interpreted differently in
the source. Thus, for a model J of A2 such that aJ = bJ

and F ′J = G′J = {aJ }, there exists no model I of K1

such that (I,J ) |= T12 (which would require aI = aJ and
bI = bJ ). In general, there exists no universal solution for
K1 under M, even though K1 and T12 are consistent with
each other.

A second class of translations is obtained in [Arenas et al.,
2012a] by observing that solutions and universal solutions are
too restrictive for some applications, in particular when one
only needs a translation storing enough information to prop-
erly answer some queries. For the particular case of UCQ,
this gives rise to the notions of UCQ-solution and universal
UCQ-solution. Given a mappingM = (Σ1,Σ2, T12), a KB
K1 = 〈T1,A1〉 over Σ1 and a KB K2 over Σ2, K2 is a UCQ-
solution for K1 under M if for every query q ∈ UCQ over
Σ2: cert(q, 〈T1 ∪ T12,A1〉) ⊆ cert(q,K2), while K2 is a
universal UCQ-solution for K1 under M if for every query
q ∈ UCQ over Σ2: cert(q, 〈T1 ∪ T12,A1〉) = cert(q,K2).

Finally, a last class of solutions is obtained in [Arenas et
al., 2012a] by considering that users want to translate as much
of the knowledge in a TBox as possible, as a lot of effort
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is put in practice when constructing a TBox. This observa-
tion gives rise to the notion of UCQ-representation [Arenas et
al., 2012a], which formalizes the idea of translating a source
TBox according to a mapping. Next, we present an alternative
formalization of this notion, which is appropriate for our set-
ting where disjointness assertions are considered.1 Assume
thatM = (Σ1,Σ2, T12) and T1, T2 are TBoxes over Σ1 and
Σ2, respectively. Then T2 is a UCQ-representation of T1 un-
derM if for every query q ∈ UCQ over Σ2 and every ABox
A1 over Σ1 that is consistent with T1:

cert(q, 〈T1 ∪ T12,A1〉) =⋂
A2 :A2 is an ABox over Σ2 that

is a UCQ-solution forA1 underM

cert(q, 〈T2,A2〉). (†)

Notice that in the previous definition,A2 is said to be a UCQ-
solution forA1 underM if the KB 〈∅,A2〉 is a UCQ-solution
for the KB 〈∅,A1〉 under M. Let us explain the intuition
behind the definition of the notion of UCQ-representation.
Assume that T1, T2, M satisfy (†). First, T2 captures the
information in T1 that is translated by M and that can be
extracted by using a UCQ, as for every ABox A1 over Σ1

that is consistent with T1 and every UCQ q over Σ2, if we
choose an arbitrary UCQ-solution A2 for A1 underM, then
it holds that cert(q, 〈T1∪T12,A1〉) ⊆ cert(q, 〈T2,A2〉). No-
tice that A1 is required to be consistent with T1 in the pre-
vious condition, as we are interested in translating data that
make sense according to T1. Second, T2 does not include any
piece of information that can be extracted by using a UCQ
and it is not the result of translating the information in T1

according to M. In fact, if A1 is an ABox over Σ1 that is
consistent with T1 and q is a UCQ over Σ2, then it could be
the case that cert(q, 〈T1 ∪ T12,A1〉) ( cert(q, 〈T2,A?

2〉) for
some UCQ-solution A?

2 for A1 underM. However, the ex-
tra tuples extracted by query q are obtained from the extra
information in A?

2, as if we consider a tuple ~a that belong to
cert(q, 〈T2,A2〉) for every UCQ-solution A2 for A1 under
M, then it holds that ~a ∈ cert(q, 〈T1 ∪ T12,A1〉).
Example 3.2 Assume that M = ({F (·), G(·), H(·), D(·)},
{F ′(·), G′(·), H ′(·)}, T12), where T12 = {F v F ′, G v
G′, H v H ′}, and let T1 = {F v G}. As expected, TBox
T2 = {F ′ v G′} is a UCQ-representation of T1 under M.
Moreover, we can add the inclusion D v ¬H ′ to T12, and
T2 will still remain a UCQ-representation of T1 under M.
Notice that in this latter setting, our definition has to deal
with some ABoxesA1 that are consistent with T1 but not with
T1 ∪ T12, for instance A1 = {H(a), D(a)} for some con-
stant a. In those cases, Equation (†) is trivially satisfied, since
MOD(〈T1 ∪ T12,A1〉) = ∅ and the set of UCQ-solutions for
A1 underM is empty.

3.2 On the problem of computing solutions
Arguably, the most important problem in knowledge ex-
change [Arenas et al., 2011; 2012a], as well as in data ex-
change [Fagin et al., 2005; Kolaitis, 2005], is the task of

1If disjointness assertions are not allowed, then this new notion
can be shown to be equivalent to the original formalization of UCQ-
representation proposed in [Arenas et al., 2012a].

computing a translation of a KB according to a mapping. To
study the computational complexity of this task for the dif-
ferent notions of solutions presented in the previous section,
we introduce the following decision problems. The member-
ship problem for universal solutions (resp. universal UCQ-
solutions) has as input a mapping M = (Σ1,Σ2, T12) and
KBs K1, K2 over Σ1 and Σ2, respectively. Then the question
to answer is whether K2 is a universal solution (resp. uni-
versal UCQ-solution) for K1 underM. Moreover, the mem-
bership problem for UCQ-representations has as input a map-
pingM = (Σ1,Σ2, T12) and TBoxes T1, T2 over Σ1 and Σ2,
respectively, and the question to answer is whether T2 is a
UCQ-representation of T1 underM.

In our study, we cannot leave aside the existential versions
of the previous problems, which are directly related with the
problem of computing translations of a KB according to a
mapping. Formally, the non-emptiness problem for univer-
sal solutions (resp. universal UCQ-solutions) has as input a
mappingM = (Σ1,Σ2, T12) and a KBK1 over Σ1. Then the
question to answer is whether there exists a universal solution
(resp. universal UCQ-solution) for K1 underM. Moreover,
the non-emptiness problem for UCQ-representations has as
input a mappingM = (Σ1,Σ2, T12) and a TBox T1 over Σ1,
and the question to answer is whether there exists a UCQ-
representation of T1 underM.

4 Our contributions
In Section 3.2, we have introduced the problems that are stud-
ied in this paper. It is important to notice that these problems
are defined by considering only KBs (as opposed to extended
KBs), as they are the formal counterpart of OWL 2 QL. Nev-
ertheless, as shown in Section 5, there are natural examples
of OWL 2 QL specifications and mappings where null values
are needed when constructing solutions. Thus, we also study
the problems defined in Section 3.2 in the case where transla-
tions can be extended KBs. It should be noticed that the no-
tions of solution, universal solution, UCQ-solution, universal
UCQ-solution, and UCQ-representation have to be enlarged
to consider extended KBs, which is straightforward to do. In
particular, given a mappingM = (Σ1,Σ2, T12) and TBoxes
T1, T2 over Σ1 and Σ2, respectively, T2 is said to be a UCQ-
representation of T1 under M in this extended setting if in
Equation (†),A2 is an extended ABox over Σ2 that is a UCQ-
solution for A1 underM.

The main contribution of this paper is to provide a de-
tailed analysis of the complexity of the membership and
non-emptiness problems for the notions of universal solu-
tion and UCQ-representation. In Figure 1, we provide a
summary of the main results in the paper, which are ex-
plained in more detail in Sections 5 and 6. It is important
to notice that these results considerably extend the previous
known results about these problems [Arenas et al., 2012a;
2012b]. In the first place, the problem of computing univer-
sal solutions was studied in [Arenas et al., 2012a] for the case
of DL-LiteRDFS , a fragment of DL-LiteR that allows neither
for inclusions of the form B v ∃R nor for disjointness as-
sertions. In that case, it is straightforward to show that every
source KB has a universal solution that can be computed by
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Membership ABoxes extended ABoxes
Universal solutions in NP NP-complete
UCQ-representations NLOGSPACE-complete

Non-emptiness ABoxes extended ABoxes
Universal solutions in NP PSPACE-hard, in EXPTIME
UCQ-representations NLOGSPACE-complete

Figure 1: Complexity results obtained in the paper about the membership and non-emptiness problems.

using the chase procedure [Calvanese et al., 2007]. Unfortu-
nately, this result does not provide any information about how
to solve the much larger case considered in this paper, where,
in particular, the non-emptiness problem is not trivial. In fact,
for the case of the notion of universal solution, all the lower
and upper bounds provided in Figure 1 are new results, which
are not consequences of the results obtained in [Arenas et al.,
2012a]. In the second place, a notion of UCQ-representation
that is appropriate for the fragment of DL-LiteR not including
disjointness assertions was studied in [Arenas et al., 2012a;
2012b]. In particular, it was shown that the membership and
non-emptiness problems for this notion are solvable in poly-
nomial time. In this paper, we considerably strengthen these
results: (i) by generalizing the definition of the notion of
UCQ-representation to be able to deal with OWL 2 QL, that
is, with the entire language DL-LiteR (which includes dis-
jointness assertions); and (ii) by showing that the membership
and non-emptiness problems are both NLOGSPACE-complete
in this larger scenario.

It turns out that reasoning about universal UCQ-solutions
is much more intricate. In fact, as a second contribution of
our paper, we provide a PSPACE lower bound for the com-
plexity of the membership problem for the notion of univer-
sal UCQ-solution, which is in sharp contrast with the NP
and NLOGSPACE upper bounds for this problem for the case
of universal solutions and UCQ-representations, respectively
(see Figure 1). Although many questions about universal
UCQ-solutions remain open, we think that this is an interest-
ing first result, as universal UCQ-solutions have only been in-
vestigated before for the very restricted fragment DL-LiteRDFS

of DL-LiteR [Arenas et al., 2012a], which is described in the
previous paragraph.

5 Computing universal solutions
In this section, we study the membership and non-emptiness
problems for universal solutions, in the cases where nulls are
not allowed (Section 5.1) and are allowed (Section 5.2) in
such solutions. But before going into this, we give an exam-
ple that shows the shape of universal solutions in DL-LiteR.
Example 5.1 Assume that M = ({F (·), S(·, ·)}, {G′(·)},
{∃S− v G′}), and let K1 = 〈T1,A1〉, where T1 = {F v
∃S} and A1 = {F (a)}. Then a natural way to construct a
universal solution for K1 underM is to ‘populate’ the target
with all implied facts (as it is usually done in data exchange).
Thus, the ABoxA2 = {G′(n)}, where n is a labeled null, is a
universal solution for K1 underM if nulls are allowed. No-
tice that here, a universal solution with non-extended ABoxes
does not exist: substituting n by any constant is too restric-
tive, ruining universality.
Example 5.2 Now, assume M = ({F (·), S(·, ·), T (·, ·)},
{S′(·, ·)}, {S v S′, T v S′}), and K1 = 〈T1,A1〉, where

T1 = {F v ∃S, ∃S− v ∃S} and A1 = {F (a), T (a, a)}.
In this case, we cannot use the same approach as in Exam-
ple 5.1 to construct a universal solution, as now we would
need of an infinite number of labeled nulls to construct such
a solution. However, as S and T are transferred to the same
role S′, it is possible to use constant a to represent all im-
plied facts. In particular, in this case A2 = {S′(a, a)} is a
universal solution for K1 underM.

5.1 Universal solutions without null values
We explain here how the NP upper bound for the non-
emptiness problem for universal solutions is obtained, when
ABoxes are not allowed to contain null values.

Assume given a mapping M = (Σ1, Σ2, T12) and a KB
K1 = 〈T1,A1〉 over Σ1. To check whether K1 has a univer-
sal solution underM, we use the following non-deterministic
polynomial-time algorithm. First, we construct an ABox A2

over Σ2 containing every membership assertion α such that
〈T1 ∪ T12,A1〉 |= α, where α is of the form either B(a)
or R(a, b), and a, b are constants mentioned in A1. Second,
we guess an interpretation I of Σ1 such that I |= K1 and
(I,UA2

) |= T12, where UA2
is the interpretation of Σ2 natu-

rally corresponding2 to A2. The correctness of the algorithm
is a consequence of the facts that:

a) there exists a universal solution for A1 underM if and
only if A2 is a solution for A1 underM; and

b) A2 is a solution for A1 under M if and only if there
exists a model I of K1 such that (I,UA2) |= T12.

Moreover, the algorithm can be implemented in a non-
deterministic polynomial-time Turing machine given that:
(i) A2 can be constructed in polynomial time; (ii) if there
exists a model I of K1 such that (I,UA2) |= T12, then there
exists a model of K1 of polynomial-size satisfying this con-
dition; and (iii) it can be checked in polynomial time whether
I |= K1 and (I,UA2

) |= T12.
In addition, in this case, the membership problem can be

reduced to the non-emptiness problem, thus, we have that:

Theorem 5.3 The non-emptiness and membership problems
for universal solutions are in NP.

The exact complexity of these problems remains open. In
fact, we conjecture that these problems are in PTIME.

We conclude by showing that reasoning about universal
UCQ-solutions is harder than reasoning about universal solu-
tions, which can be explained by the fact that TBoxes have
bigger impact on the structure of universal UCQ-solutions

2Interpretation UA2 can be defined as the Herbrand model of
A2 extended with fresh domain elements to satisfy assertions of the
form ∃R(a) in A2.
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rather than of universal solutions. In fact, by using a reduc-
tion from the validity problem for quantified Boolean formu-
las, similar to a reduction in [Konev et al., 2011], we are able
to prove the following:

Theorem 5.4 The membership problem for universal UCQ-
solutions is PSPACE-hard.

5.2 Universal solutions with null values
We start by considering the non-emptiness problem for uni-
versal solutions with null values, that is, when extended
ABoxes are allowed in universal solutions. As our first result,
similar to the reduction above, we show that this problem is
PSPACE-hard, and identify the inclusion of inverse roles as
one of the main sources of complexity.

To obtain an upper bound for this problem, we use two-
way alternating automata on infinite trees (2ATA), which
are a generalization of nondeterministic automata on infinite
trees [Vardi, 1998] well suited for handling inverse roles in
DL-LiteR. More precisely, given a KB K, we first show that
it is possible to construct the following automata:

– Acan
K is a 2ATA that accepts trees corresponding to the

canonical model ofK 3 with nodes arbitrary labeled with
a special symbol G;

– Amod
K is a 2ATA that accepts a tree if its subtree labeled

with G corresponds to a tree model I of K (that is, a
model forming a tree on the labeled nulls); and

– Afin is a (one-way) non-deterministic automaton that ac-
cepts a tree if it has a finite prefix where each node is
marked with G, and no other node in the tree is marked
with G.

Then to verify whether a KB K1 = 〈T1,A1〉 has a univer-
sal solution under a mappingM = (Σ1,Σ2, T12), we solve
the non-emptiness problem for an automaton B defined as
the product automaton of πΓK(Acan

K ), πΓK(Amod
K ) and Afin ,

where K = 〈T1 ∪ T12,A1〉, πΓK(Acan
K ) is the projection of

Acan
K on a vocabulary ΓK not mentioning symbols from Σ1,

and likewise for πΓK(Amod
K ). If the language accepted by B

is empty, then there is no universal solution for K1 underM,
otherwise a universal solution (possibly of exponential size)
exists, and we can compute it by extracting the ABox encoded
in some tree accepted by B . Summing up, we get:

Theorem 5.5 If extended ABoxes are allowed in universal
solutions, then the non-emptiness problem for universal so-
lutions is PSPACE-hard and in EXPTIME.

Interestingly, the membership problem can be solved more
efficiently in this scenario, as now the candidate universal so-
lutions are part of the input. In the following theorem, we
pinpoint the exact complexity of this problem.

Theorem 5.6 If extended ABoxes are allowed in universal
solutions, then the membership problem for universal solu-
tions is NP-complete.

3If K = 〈T ,A〉, then this model essentially corresponds to the
chase of A with T (see [Konev et al., 2011] for a formal definition).

6 Computing UCQ-representations
In Section 5, we show that the complexity of the member-
ship and non-emptiness problems for universal solutions dif-
fer depending on whether ABoxes or extended ABoxes are
considered. On the other hand, we show in the following
proposition that the use of null values in ABoxes does not
make any difference in the case of UCQ-representations. In
this proposition, given a mappingM and TBoxes T1, T2, we
say that T2 is a UCQ-representation of T1 under M consid-
ering extended ABoxes if T1, T2, M satisfy Equation (†) in
Section 3.1, but assuming that A2 is an extended ABox over
Σ2 that is a UCQ-solution for A1 underM.

Proposition 6.1 A TBox T2 is a UCQ-representation of a
TBox T1 under a mapping M if and only if T2 is a UCQ-
representation of T1 underM considering extended ABoxes.

Thus, from now on we study the membership and non-
emptiness problems for UCQ-representations assuming that
ABoxes can contain null values.

We start by considering the membership problem for UCQ-
representations. In this case, one can immediately notice
some similarities between this task and the membership prob-
lem for universal UCQ-solutions, which was shown to be
PSPACE-hard in Theorem 5.4. However, the universal quan-
tification over ABoxes in the definition of the notion of UCQ-
representation makes the latter problem computationally sim-
pler, which is illustrated by the following example.

Example 6.2 Assume that M = (Σ1,Σ2, T12), where
Σ1 = {F (·), S1(·, ·), S2(·, ·), T1(·, ·), T2(·, ·)}, Σ2 =
{F ′(·), S′(·, ·), T ′(·, ·), G′(·)} and T12 = {F v F ′, S1 v
S′, S2 v S′, T1 v T ′, T2 v T ′,∃T−1 v G′}. Moreover,
assume that T1 = {F v ∃S1, F v ∃S2,∃S−1 v ∃T1,∃S−2 v
∃T2} and T2 = {F ′ v ∃S′,∃S′− v ∃T ′,∃T ′− v G′}.
If we were to verify whether 〈T2, {F ′(a)}〉 is a universal
UCQ-solution for 〈T1, {F (a)}〉 underM (which it is in this
case), then we would first need to construct the path π =
〈F ′(a), S′(a, n), T ′(n,m), G′(m)〉 formed by the inclusions
in T2, where n,m are fresh null values, and then we would
need to explore the translations according toM of all paths
formed by the inclusions in T1 to find one that matches π.

On the other hand, to verify whether T2 is a UCQ-
representation of T1 under M, one does not need to exe-
cute any “backtracking”, as it is sufficient to consider inde-
pendently a polynomial number of pieces C taken from the
paths formed by the inclusions in T1, each of them of poly-
nomial size, and then checking whether the translation C′ of
C according toM matches with the paths formed from C′ by
the inclusions in T2. If any of these pieces does not satisfy
this condition, then it can be transformed into a witness that
Equation (†) is not satisfied, showing that T2 is not a UCQ-
representation of T1 underM (as we have a universal quan-
tification over the ABoxes over Σ1 in the definition of UCQ-
representations). In fact, one of the pieces considered in this
case is C = 〈T2(n,m)〉, where n, m are null values, which
does not satisfy the previous condition as the translation C′
of C according toM is 〈T ′(n,m)〉, and this does not match
with the path 〈T ′(n,m), G′(m)〉 formed from C′ by the inclu-
sions in T2. This particular case is transformed into an ABox
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A1 = {T2(b, c)} and a query q = T ′(b, c) ∧ G′(c), where b,
c are fresh constants, for which we have that Equation (†) is
not satisfied.

Notice that disjointness assertions in the mapping may
cause 〈T1 ∪ T12,A1〉 to become inconsistent for some source
ABoxes A1 (which will make all possible tuples to be in the
answer to every query), therefore additional conditions have
to be imposed on T2. To give more intuition about how the
membership problem for UCQ-representations is solved, we
give an example showing how one can deal with some of
these inconsistency issues.

Example 6.3 Assume thatM = (Σ1,Σ2, T12), where Σ1 =
{F (·), G(·), H(·)}, Σ2 = {F ′(·), G′(·), H ′(·)} and T12 =
{F v F ′, G v G′, H v H ′}. Moreover, assume that T1 =
{F v G} and T2 = {F ′ v G′}. In this case, it is clear that
T2 is a UCQ-representation of T1 underM. However, if we
add inclusion H v ¬G′ to T12, then T2 is no longer a UCQ-
representation of T1 under M. To see why this is the case,
consider an ABox A1 = {F (a), H(a)}, which is consistent
with T1, and a query q = F ′(b), where b is a fresh constant.
Then we have that cert(q, 〈T1 ∪ T12,A1〉) = {()} as KB
〈T1 ∪ T12,A1〉 is inconsistent, while cert(q, 〈T2,A2〉) = ∅
for UCQ-solution A2 = {F ′(a), H ′(a)} for A1 under M.
Thus, we conclude that Equation (†) is violated in this case.

One can deal with the issue raised in the previous example
by checking that on every pair (B,B′) of T1-consistent ba-
sic concepts over Σ1,4 it holds that: (B,B′) is (T1 ∪ T12)-
consistent if and only if (B,B′) is (T12 ∪ T2)-consistent, and
likewise for every pair of basic roles over Σ1. This condition
guarantees that for every ABox A1 over Σ1 that is consistent
with T1, it holds that: 〈T1 ∪ T12,A1〉 is consistent if and only
if there exists an extended ABox A2 over Σ2 such that A2 is
a UCQ-solution for A1 underM and 〈T2,A2〉 is consistent.
Thus, the previous condition ensures that the sets on the left-
and right-hand side of Equation (†) coincide whenever the in-
tersection on either of these sides is taken over an empty set.

The following theorem, which requires of a lengthy and
non-trivial proof, shows that there exists an efficient algo-
rithm for the membership problem for UCQ-representations
that can deal with all the aforementioned issues.

Theorem 6.4 The membership problem for UCQ-
representations is NLOGSPACE-complete.

We conclude by pointing out that the non-emptiness prob-
lem for UCQ-representations can also be solved efficiently.
We give an intuition of how this can be done in the following
example, where we say that T1 is UCQ-representable under
M if there exists a UCQ-representation T2 of T1 underM.

Example 6.5 Assume thatM = (Σ1,Σ2, T12), where Σ1 =
{F (·), G(·), H(·)}, Σ2 = {F ′(·), G′(·)} and T12 = {F v
F ′, G v G′, H v F ′}. Moreover, assume that T1 = {F v
G}. Then it follows that T1 ∪ T12 |= F v G′, and in or-
der for T1 to be UCQ-representable underM, the following
condition must be satisfied:

4A pair (B,B)′ is T -consistent for a TBox T , if the KB
〈T , {B(a), B′(a)}〉 is consistent, where a is an arbitrary constant.

(?) there exists a concept B′ over Σ2 s.t. T12 |= F v B′,
and for each conceptB over Σ1 with T1∪T12 |= B v B′
it follows that T1 ∪ T12 |= B v G′.

The idea is then to add the inclusion B′ v G′ to a UCQ-
representation T2 so that T12 ∪ T2 |= F v G′ as well. In our
case, concept F ′ satisfies the condition T12 |= F v F ′, but it
does not satisfy the second requirement as T1 ∪ T12 |= H v
F ′ and T1 ∪ T12 6|= H v G′. In fact, F ′ v G′ cannot be
added to T2 as it would result in T12 ∪ T2 |= H v G′, hence
in Equation (†), the inclusion from right to left would be vio-
lated. There is no way to reflect the inclusion F v G′ in the
target, so in this case T1 is not UCQ-representable underM.

The proof of the following result requires of some involved
extensions of the techniques used to prove Theorem 6.4.
Theorem 6.6 The non-emptiness problem for UCQ-
representations is NLOGSPACE-complete.

The techniques used to prove Theorem 6.6, which is sketched
in the example below.
Example 6.7 ConsiderM and T1 from Example 6.5, but as-
suming that T12 does not contain the inclusion H v F ′.
Again, T1 ∪ T12 |= F v G′, but now condition (?) is sat-
isfied. Then, an algorithm for computing a representation es-
sentially needs to take any B′ given by condition (?) and add
the inclusion B′ v F ′ to T2. In this case, T2 = {F ′ v G′} is
a UCQ-representation of T1 underM.

7 Conclusions
In this paper, we have studied the problem of KB exchange
for OWL 2 QL, improving on previously known results with
respect to both the expressiveness of the ontology language
and the understanding of the computational properties of the
problem. Our investigation leaves open several issues, which
we intend to address in the future. First, it would be good
to have characterizations of classes of source KBs and map-
pings for which universal (UCQ-)solutions are guaranteed to
exist. As for the computation of universal solutions, while
we have pinned-down the complexity of membership for ex-
tended ABoxes as NP-complete, an exact bound for the other
case is still missing. Moreover, it is easy to see that allowing
for inequalities between terms (e.g., a 6= b in Example 3.1)
and for negated atoms in the (target) ABox would allow one
to obtain more universal solutions, but a full understanding of
this case is still missing. Finally, we intend to investigate the
challenging problem of computing universal UCQ-solutions,
adopting also here an automata-based approach.
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zenat. Ontology matching: State of the art and future chal-
lenges. IEEE Trans. on Knowledge and Data Engineering,
25(1):158–176, 2013.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with
two-way automata. In Proc. of the 25th Int. Coll. on Au-
tomata, Languages and Programming (ICALP’98), vol-
ume 1443 of Lecture Notes in Computer Science, pages
628–641. Springer, 1998.

710




