
The Dynamics of Database Views

Marcelo Arenas and Leopoldo Bertossi

P. Universidad Católica de Chile
Escuela de Ingenieŕıa

Departamento de Ciencia de Computación
Casilla 306, Santiago 22, Chile.
{marenas,bertossi}@ing.puc.cl

Abstract. The dynamics of relational database can be specified by
means of Reiter’s formalism based on the situation calculus. The speci-
fication of transaction based database updates is given in terms of Suc-
cessor State Axioms (SSAs) for the base tables of the database. These
axioms completely describe the contents of the tables at an arbitrary
state of the database that is generated by the execution of a legal prim-
itive transaction, and thus solve the frame problem for databases. In
this paper we show how to derive action–effect based SSAs for views
from the SSAs for the base tables. We prove consistency properties for
those axioms. In addition, we establish the relationship between the de-
rived SSA and the view definition as a static integrity constraint of the
database. We give applications of the derived SSAs to the problems of
view maintenance, and checking, proving, and enforcement of integrity
constraints.

1 Introduction

The situation calculus (SC) [MH1] is a family of many sorted languages of pred-
icate logic that contain domain individuals, actions, and situations (states1) at
the same first order object level. So, first order quantifications over all these
sorts of individuals are allowed. Since those languages are designed to represent
knowledge and reason about actions and dynamic properties subject to discrete
change due to action executions, it is natural to think of applying them to specify
the dynamics of a relational database. This was done by Reiter in [Re2] on the
basis of his formalism for solving the frame problem [Re1], that is the problem
of obtaining a succinct specification of the properties that do not change when
actions are executed. In [Be1] the main features of an automated system able to
reason with and from those database specifications are presented.

According to Reiter, the specification of transaction based database updates
can be given in terms of Successor State Axioms (SSAs) for the base tables of
the database. These axioms completely describe the contents of the tables at

1 In this paper we do not make any distinction between situations and states.

B. Freitag et al. (Eds.): Transactions and Change in Logic DBs, LNCS 1472, pp. 197–226, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

198 Marcelo Arenas and Leopoldo Bertossi

an arbitrary state of the database that is generated by the execution of a legal
primitive transaction2, and thus solve the frame problem for databases.

The SSAs usually come from Effect Axioms by means of a compilation pro-
cess that materializes at the object level the assumption that the effect axioms
provide all the conditions under which an entry in a table may change its truth
value [Re1]. Then, they have a very particular syntactical form and we call them
action-effect based SSAs. These kind of SSAs provide a lot of information about
the dynamics of the tables.

In database theory and praxis, views are tables that are defined in logical
terms from the base tables of the database. They are usually virtual tables,
but they can be materialized as physical tables for certain purposes, e.g. in
data warehousing [CD1]. They are an important component of the database. In
this paper we show how to derive action–effect based SSAs for views from the
SSAs for the base tables. This problem was originally formulated in [Re2]. We
also prove consistency properties for those axioms. This is done in section 5,
after having made our problem precise in section 4. In section 6, we establish
the relationship between the derived SSA and the view definition as a static
integrity constraint of the database.

Having appropriate SSAs for views allows us to solve some reasoning and
computational tasks by processing the information contained in the axioms. It
is in this way that we provide applications of the derived SSAs for views to
the solution of some interesting problems in databases. This is done on the
assumption that the specification of the database dynamics is given in terms of
SSAs. In section 7 we present an algorithm for view maintenance derived from
the SSAs for the view. In section 8 we apply SSAs for views to the problem of
integrity constraints checking/proving. In section 9 we consider the problem of
embedding desired integrity constraints in a specification based on SSAs.

In section 10, we draw some conclusions and discuss possible connections of
our work to other interesting problems in databases that are worth being further
explored. In section 2 we review Reiter’s formalism, which is further discussed
in section 3.

The proofs of some of the propositions in this paper are rather long and tech-
nical. For this reason they are sketched in an appendix. Nevertheless, we decided
to leave the statements of the propositions, sometimes also a little technical, in
the main body of the paper because they provide mechanisms for computing
SSAs for some typical forms of views definitions.

2 The Situation Calculus and Database Updates

Characteristic ingredients of a particular language L of the situation calculus,
besides the usual symbols of predicate logic, are: (1) Sorts action , situation, and
individual (this last one for the individuals in the domain; this sort could be split
into subsorts if necessary); (2) Predicate symbols of the sort (individual , . . . ,
2 To be precise, a primitive transaction is said legal if its preconditions at the execution

state are satisfied.

The Dynamics of Database Views 199

individual , situation) to denote tables. These are predicates that depend on the
state of the world and can be thought as the tables in a relational database3; (3)
Operation symbols of the sort (individual , . . . , individual) → action for denoting
actions with individuals as parameters (or applied to individuals), for example,
enroll(·) may be an operation, and enroll(john) becomes an action term (or
a term of sort action . Actions correspond to the primitive transactions of the
database; (4) A constant, S0, to denote the initial state; (5) An operation symbol
do of sort (action , situation) → situation, that executes an action at a given state
producing a successor state.

In these languages there are first order variables for individuals of each sort,
so it is possible to quantify over individuals, actions, and situations. They are
usually denoted by ∀x̄, ∀a, ∀s, respectively.

The specification of a dynamically changing world, by means of an appropri-
ate language of the situation calculus, consists in stating the laws of evolution of
the world. This is typically done by specifying: (1) Fixed, state independent, but
domain dependent knowledge about the individuals of the world; (2) Knowledge
about the state of the world at the initial situation S0 given in terms of formulas
that do not mention any state besides S0; (3) Preconditions for performing the
different actions (or making their execution possible). We introduce a predicate
Poss in L of sort (action , situation), so that Poss(a, s) says that the execution
of action a is possible in state s; (4) The immediate (positive or negative) effects
of actions in terms of the tables whose truth values we know are changed by
their execution.

In Reiter’s formalism, the knowledge contained in items (1) and (2) above is
considered the initial database Σ0. The information given in item (3) is formal-
ized by means of action precondition axioms (APAs) of the form Poss(A(x̄), s) ≡
πA(x̄, s), for each action name A, where πA(x̄, s) is a SC formula that is simple in
s, that is, it contains no state term other than s, in particular, no do symbol, no
quantifications on states, and no occurrences of the Poss predicate [LR2] (later
on we will give the precise definition). Finally, item (4) is expressed by effect
axioms for pairs (primitive transaction, table):

Positive Effects Axioms: For some pairs formed by a table F and an action
name A, an axiom of the form:

∀(x̄, ȳ, s)[Poss(A(ȳ), s) ∧ ϕ+
F (ȳ, x̄, s) ⊃ F (x̄, do(A(ȳ), s))]. (1)

Intuitively, if the named primitive transaction A is possible, and the precondi-
tions on the database, in particular, on the table F , represented by the metafor-
mula ϕ+

F (ȳ, x̄, s) are true at state s, then the statement F (x) becomes true at
the successor state do(A(ȳ), s) obtained after execution of A at state s. Here,
x̄, ȳ are parameters for the table and action. Notice that in general we have
two kinds of conditions: (a) preconditions for action executions, independently
from any table they may affect; they are axiomatized by the Poss predicate;
and (b) preconditions on the database for pairs table/action which make the

3 In the AI literature they are called fluents.

200 Marcelo Arenas and Leopoldo Bertossi

changes possible (given that the action is already possible). These preconditions
are represented by ϕ+

F (ȳ, x̄, s).

Negative Effects Axioms: For some pairs formed by a table F and an action
name A, an axiom of the form:

∀(x̄, ȳ, s)[Poss(A(ȳ), s) ∧ ϕ−F (ȳ, x̄, s) ⊃ ¬F (x̄, do(A(ȳ), s))]. (2)

This is the case where action A makes table F to become false of x̄ in the
successor state.

Example 1. Consider an educational database as in [Re2], with the following
ingredients. Tables: 1. Enrolled(stu, c, s), student stu is enrolled in course c in
the state s. 2. Grade(stu, c, g, s), the grade of student stu in course c is g in
the state s. Primitive Transactions: 1. register(stu, c), register student stu in
course c. 2. change(stu, c, g), change the grade of student stu in course c to g.
3. drop(stu, c), student stu drops the course c.

Action Precondition Axioms:

∀(stu, c, s)[Poss(register(stu, c), s) ≡ ¬Enrolled(stu, c, s)].
∀(stu, c, g, s)[Poss(change(stu, c, g), s) ≡ ∃g′Grade(stu, c, g′, s)].
∀(stu, c, s)[Poss(drop(stu, c), s) ≡ Enrolled(stu, c, s)].

Effect Axioms:

∀(stu,c, s)[Poss(register(stu, c), s) ⊃ Enrolled(stu, c, do(register(stu, c), s))]
∀(stu,c, s)[Poss(drop(stu, c), s) ⊃ ¬Enrolled(stu, c, do(drop(stu, c), s))]
∀(stu,c, g, s)[Poss(change(stu, c, g), s) ⊃

Grade(stu, c, g, do(change(stu, c, g), s))]
∀(stu,c, g, g′, s)[Poss(change(stu, c, g′), s) ∧ g 6= g′ ⊃

¬Grade(stu, c, g, do(change(stu, c, g′), s))]

2

Since the situation calculus extends usual languages of predicate logic used to
describe static and extensional aspects of relational databases with terms for
denoting primitive transactions and database states, we gain in expressiveness,
having now the possibility of representing knowledge and reasoning about the
database dynamics and explicitly about the transactions involved in it. This is
achieved in a single language that accommodates all the aspects of databases
mentioned before. Nevertheless, as correctly pointed out in [Go1], this flexibility
raises a new problem that we can already detect in the specification in the exam-
ple above: it does not mention the usually many things (entries in tables) that
do not change when a specific action is executed. So, we face the so called frame
problem, consisting of providing a short, succinct, specification of the properties
that persist after actions are performed.

The Dynamics of Database Views 201

An undesirable and naive (non) solution to this problem consists in writing
down directly and explicitly all and the many properties that remain unchanged
as primitive transactions are executed4. This would lead to a large number of
axioms. Fortunately, Reiter [Re1] discovered a simple solution to the frame prob-
lem as it appears in the situation calculus. It allows to construct a first order
specification that accounts both for effects as non effects, from a specification
that contains descriptions of effects only, as in the example above. We sketch
this solution in the rest of this section.

For illustration, assume that we have only two positive effects laws for table
F : (1) and

∀(x̄, z̄, s)[Poss(A′(z̄), s) ∧ ψ+
F (z̄, x̄, s) ⊃ F (x̄, do(A′(z̄), s))]. (3)

We may combine them into one general positive effect axiom for table F :

∀(a, x̄, s)[Poss(a, s) ∧ [∃ȳ(a = A(ȳ) ∧ ϕ+
F (ȳ, x̄, s)) ∨

∃z̄(a = A′(z̄) ∧ ψ+
F (z̄, x̄, s))] ⊃ F (x̄, do(a, s))].

In this form we obtain, for each table F , a general positive effect law of the
form:

∀(a, x̄, s)[Poss(a, s) ∧ γ+
F (a, x̄, s) ⊃ F (x̄, do(a, s))].

Analogously, we obtain, for each table F , a general negative effect axiom:

∀(a, x̄, s)[Poss(a, s) ∧ γ−F (a, x̄, s) ⊃ ¬F (x̄, do(a, s))].

In this way we have represented, for each table F , in one single axiom all the
actions and the corresponding conditions on the database that can make F (x̄)
to be true at an arbitrary successor state obtained by executing a legal action.
In the same way we can describe when F (x̄) becomes false. We will see later
on how to combine these two axioms general axioms for table F to give a full
account of its dynamics.

Example 2. (cont’d) In the educational example we obtain the following general
effect axioms for the table Grade :

∀(a, stu, c, g, s)[Poss(a, s) ∧ a = change(stu, c, g) ⊃ Grade(stu, c, g, do(a, s))]
∀(a, stu, c, g, s)[Poss(a, s) ∧ ∃g′(a = change(stu, c, g′) ∧ g 6= g′)

⊃ ¬Grade(stu, c, g, do(a, s))].

2

The basic assumption underlying Reiter’s solution to the frame problem is that
the general effect axioms, both positive and negative, for a given table F , contain
4 We consider “action” and “primitive transaction” as synonymous.

202 Marcelo Arenas and Leopoldo Bertossi

all the possibilities for table F to change its truth value from a state to a successor
state. Actually, for each table F we generate its Successor State Axiom:

∀(a, s)Poss(a, s) ⊃ ∀x̄[F (x̄, do(a, s)) ≡ (γ+
F (a, x̄, s) ∨

(F (x̄, s) ∧ ¬γ−F (a, x̄, s)))]. (4)

Here, γ+ and γ− are of the form
∨
some A′s ∃ū(a = A(ū) ∧ ϕ(ū, x̄, s)), meaning

that action A, under condition ϕ, makes F (x̄, do(A, s)) true, in the case of γ+,
and false, in the case of γ−. Thus, the SSA says that if action a is possible, then
F becomes true at the successor state that results from the execution of action
a if and only if a is one of the actions causing F to be true (and for which the
corresponding preconditions, ϕ, are true), or F was already true before executing
a and this action is not one of the actions that falsify F .

Example 3. (cont’d) In our running example, we obtain the following SSAs for
the tables in the database:

∀(a, s)Poss(a, s) ⊃ ∀(stu, c)[Enrolled(stu, c, do(a, s)) ≡ a = register(stu, c) ∨
Enrolled(stu, c, s) ∧ a 6= drop(stu, c)]

∀(a, s)Poss(a, s) ⊃ ∀(stu, c, g)[Grade(stu, c, g, do(a, s)) ≡ a = change(stu, c, g) ∨
Grade(stu, c, g, s) ∧ ¬∃g′(a = change(stu, c, g′) ∧ g′ 6= g)].

2

Notice that, provided there is complete knowledge about the contents of the
tables at the initial state, the SSAs completely describe the contents of the
tables at every state that can be reached by executing a finite sequence of legal
primitive transactions (that is for which the corresponding Poss conditions are
satisfied). The SSAs have a nice inductive structure that makes some reasoning
tasks easy, at least in principle.

Reiter’s SSAs materialize at the object level a meta assumption on expla-
nation closure: the changes caused on a table are only those that are explicitly
represented in the effects axioms. This construction of the SSAs has some simi-
larity with negation as failure in logic programming: if we want to determine if
the truth value of the statement F (x̄) persists, we just check the general effect
axioms to find out if there are any reasons for change, if we do not find anything
there, we establish that F (x̄) does not change. Also in this line of reasoning, the
construction process of the SSAs is reminiscent of Clark’s predicate completion
in logic programming [Cl1]. As in that case, for the new specification to work
properly one needs to makes some additional ontological assumptions about the
models of the situation calculus. Following [LR1], we will assume that the follow-
ing Foundational Axioms of the Situation Calculus (FAs) underlie any database
specification: 1. Unique Names Axioms for Actions (UNAA): Ai(x̄) 6= Aj(ȳ),
for all different action names Ai, Aj ; and ∀(x̄, ȳ)[A(x̄) = A(ȳ) ⊃ x̄ = ȳ], for
every action name A. 2. Unique Names Axioms for States: S0 6= do(a, s),
do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2.

The Dynamics of Database Views 203

For some reasoning tasks we need an Induction Axiom on States:

∀P [P (S0) ∧ ∀s∀a (P (s) ⊃ P (do(a, s))) ⊃ ∀s P (s)],

that has the effect of restricting the domain of situations to the one containing
the initial situation and the situations that can be obtained by executing a finite
number of actions. In this way, no “ghost” situations may appear. The axiom
is second order, but for some reasoning tasks, like proving integrity constraints,
reasoning can be done at the first order level [LR1,Be1].

Finally, we will be usually interested in reasoning about states that are ac-
cessible from the initial situation by executing a finite sequence of legal actions.
This accessibility relation on states, ≤, can be defined from the induction axiom
plus the conditions ¬s < S0, s < do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′, which we call
(less-axioms).

Summarizing, a specification Σ, in the SC, of transaction based database
updates consists of the sets: Σ0 ∪ APAs ∪ SSAs ∪ FAs ∪ (less − axioms).

3 The Structure of SSAs

In [Re2] Reiter considers database specifications 5 whose tables have SSAs of the
general form

∀(a, s)Poss(a, s) ⊃ ∀x̄[F (x̄, do(a, s)) ≡ ΦF (a, x̄, s)], (5)

where ΦF is an arbitrary formula that is simple in s, in particular, it does not
contain the do symbol. Notice that SSAs of the form (4) are particular cases of
(5) that appear in specifications where the dynamics of the tables were originally
defined in terms of effect axioms only. This is the most usual and interesting case,
and we call those SSAs of the form (4) “action–effect based”. In the rest of the
paper we will concentrate on this kind of SSAs. To make their processing correct
and more clear, we need to be more precise about their components. We will
also agree on a sort of canonical form for them. We will everywhere assume that
we have a specification Σ for the database updates as introduced at the end of
section 2.

Definition 1. A database table P has an action-effect based Successor State
Axiom (aeSSA) wrt Σ iff Σ contains a formula of the following form as a SSA
for P :

∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ≡ γ+(a, x̄, s)∨(P (x̄, s)∧¬γ−(a, x̄, s))],

5 In this paper, whenever we refer to a “database specification”, we are talking about
a specification of the dynamics of a database as presented before.

204 Marcelo Arenas and Leopoldo Bertossi

with

Σ |= ∀(a, x̄, s)[γ+(a, x̄, s) ⊃ ¬γ−(a, x̄, s)], (6)

γ+(a, x̄, s) =
m∨

i=1

∃x̄Ai(a = Ai(x̄Ai) ∧ ϕγ
+

Ai
(x̄Ai , x̄, s)).

γ−(a, x̄, s) =
n∨

i=1

∃x̄Bi(a = Bi(x̄Bi) ∧ ϕγ
−
Bi

(x̄Bi , x̄, s)).

where Ai 6= Aj (1 ≤ i < j ≤ m), Bi 6= Bj (1 ≤ i < j ≤ n), and the ϕγ
+

Ai
(x̄Ai , x̄, s)

and ϕγ
−
Bi

(x̄Bi , x̄, s) are formulas simple in s that do not contain any action term
6.

Here, (6) is a consistency condition, first considered in [Re1], which ensures that
a same action cannot have both a positive and a negative effect on a same entry
in a table.

Example 4. (cont’d) The SSAs for Enrolled and Grade in our example can be
easily transformed in order to meet all the requirements in definition 17:

∀(a, s)Poss(a, s) ⊃ ∀(stu, c)[Enrolled(stu, c, do(a, s)) ≡ γ+(a, stu, c, s)∨
Enrolled(stu, c, s) ∧ ¬γ−(a, stu, c, s)]

∀(a, s)Poss(a, s) ⊃ ∀(stu, c, g)[Grade(stu, c, g, do(a, s)) ≡ δ+(a, stu, c, g, s)∨
Grade(stu, c, g, s) ∧ ¬δ−(a, stu, c, g, s)],

with

γ+(a, stu, c, s) = ∃(x1, x2)(a = register(x1, x2) ∧ ϕγ
+

register (x1, x2, stu, c, s)),

γ−(a, stu, c, s) = ∃(x3, x4)(a = drop(x3, x4) ∧ ϕγ
−

drop(x3, x4, stu, c, s)),

δ+(a, stu, c, g, s) = ∃(y1, y2, y3)(a = change(y1, y2, y3) ∧
ϕδ

+

change(y1, y2, y3, stu, c, g, s))

δ−(a, stu, c, g, s) = ∃(y4, y5, y6)(a = change(y4, y5, y6) ∧
ϕδ

−
change(y4, y5, y6, stu, c, g, s)).

6 For simplicity, we will sometimes denote an aeSSA as follows:

∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ≡
_

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s))

∨ P (x̄, s) ∧ ¬
_

B

∃x̄B(a = B(x̄B) ∧ ϕγ−
B (x̄B, x̄, s))].

7 It should be clear that this transformation can be automated.

The Dynamics of Database Views 205

and

ϕγ
+

register(x1, x2, stu, c, s) = x1 = stu ∧ x2 = c,

ϕγ
−

drop(x3, x4, stu, c, s) = x3 = stu ∧ x4 = c,

ϕδ
+

change(y1, y2, y3, stu, c, g, s) = y1 = stu ∧ y2 = c ∧ y3 = g,

ϕδ
−

change(y4, y5, y6, stu, c, g, s) = y4 = stu ∧ y5 = c ∧ y6 6= g.

2

Action-effect based SSAs are much more natural and informative than general
axioms of the form (5), since we can read directly from them which are the actions
that can make a table change its truth values and under which conditions. In
fact, when a table has an aeSSA, it is possible to create a simple procedure for
updating it when actions are executed. To be precise, suppose that we have a
table P with a SSA as in definition 1, and we execute an action A(c̄) in a state s.
For updating P , we consider this table as a set of tuples of the form x̄, without
the state parameter. Thus, if we want to compute the tuples in P in the state
do(A(c̄), s), we need to compute the tuples that must be added to the table (∆+

P)
and the tuples that must be removed from this table (∆−P). These sets can be
computed using the procedures shown in Figure 1.

Once we have ∆+
P and ∆−P , it is possible to compute P in do(A(c̄), s) by

adding to the tuples present in P at state s, the set ∆+
P and removing those

from ∆−P , i.e. by computing (P ∪∆+
P)−∆−P .

function Add(A(ȳ):action)
begin

∆+
P := ∅; i := 1;

while (A 6= Ai ∧ i ≤ m) i = i + 1;
if i≤ m then

for each tuple x̄ do

if ϕγ+

Ai
(ȳ, x̄, s) holds then

∆+
P = ∆+

P ∪ {x̄};
return(∆+

P);
end

function Remove(A(ȳ):action)
begin

∆−P := ∅; i := 1;
while (A 6= Bi ∧ i ≤ n) i = i + 1;
if i≤ n then

for each tuple x̄ do

if ϕγ−
Bi

(ȳ, x̄, s) holds then

∆−P = ∆−P ∪ {x̄};
return(∆−P);

end

Fig. 1. Functions for computing ∆+
P and ∆−P .

We can now rewrite the consistency condition (6) as ∆+
P ∩∆−P = ∅. Thus, this

condition ensures that when we execute an action there are no tuples that must
be both added and removed, a natural and desirable property. Additionally, this
condition ensures that it is possible to compute the table P , in a successor state,
using any of these procedures: (P ∪∆+

P)−∆−P or (P −∆−P) ∪∆+
P , i.e. it is not

important if we add and then remove tuples from P or remove and then add
tuples to P .

206 Marcelo Arenas and Leopoldo Bertossi

4 SSAs for Views?

Given the specification of the dynamics of a database, with SSAs for its base
tables, it is natural to consider the introduction of database views, that is, of
new, usually virtual, tables that are defined in terms of the base tables by means
of the logical formulas. To be precise, in our context, a view will be a new table
V (x̄, s) with an explicit definition of the form:

∀(x̄, s)[V (x̄, s) ≡df ψ(x̄, s)], (7)

where ψ(x̄, s) is a SC formula that is simple in s and mentions base tables only.
To be precise, a formula simple in situation s is an SC formula that can be

constructed by means of the following rules:

1. ϕ does not mention any situation and action terms.
2. ϕ is of the form F (t̄, s), where F is a table name, and t̄ is a tuple of terms

for individuals.
3. Formulas simple in s can be constructed by means of the usual propositional

connectives plus quantifications on individuals from other formulas simple
in s8.

In order to update a view its definition could be used in terms of the already
updated base tables. Nevertheless, it is natural to consider the possibility of
having a special SSA for that view. In this case we could reason about the view
evolution directly from its SSA (see sections 7 and 10 for more on this issue).

In [Re2], Reiter considers the problem of generating SSAs for views, and he
gives a solution based on his regression operator R[Re1], which, applied to a
formula evaluated at a successor state, returns an equivalent formula evaluated
at the current state. This is done by appealing to the SSAs of the tables involved
in the formula. More precisely, if table F , appearing in a formula ϕ, has a SSA
of the form

∀(a, s)Poss(a, s) ⊃ ∀(x1, x2 . . . , xn)[F (x1, x2, . . . , xn, do(a, s)) ≡
ΦF (x1, x2, . . . , xn, a, s)],

then the operator, R, applied to a formula ϕ, replaces each occurrence of a
formula of the form F (t1, t2, . . . , tn, do(A,S)) by ΦF |x1,x2,...,xn,a,s

t1,t2,...,tn,A,S
.

Applying the regression operator to (7), where s was replaced by do(a, s),
one obtains a SSA for V :

∀(a, s)Poss(a, s) ⊃ ∀x̄[V (x̄, do(a, s)) ≡ R[ψ(x̄, do(a, s))]]. (8)

As the application of R on the RHS of (8) eliminates the do symbol, we obtain
a SSA of the general form (5). Nevertheless, this procedure does not necessarily
produce a SSA of the form (4).
8 We are following the definition given in [LR2], except for the fact that there action

terms are allowed, something we do not need here.

The Dynamics of Database Views 207

In the next sections we show how to generate action–effect based SSAs (of
the form (4)) for views when we have such axioms for the base tables. We will
also verify that the resulting SSAs satisfy the consistency condition, if the SSAs
for the participating base tables do.

5 Generating SSAs for Views

In this section we will address the problem of constructing SSAs of the canonical
form presented in definition 1 for views whose definitions are of the form (7).
This will be done by induction on the structure of formulas simple in s that
where introduced in the preceding section, and then we will be in position to
establish the following

Theorem 1. Let Σ be a database specification, all whose base tables have aeS-
SAs. Let ψ(x̄, s) be a formula in the language of the specification that is simple
in s. Then there are formulas γ+(a, x̄, s) and γ−(a, x̄, s), such that

Σ |= ∀(a, s)Poss(a, s) ⊃ ∀x̄[ψ(x̄, do(a, s)) ≡ γ+(a, x̄, s) ∨
(ψ(x̄, s) ∧ ¬γ−(a, x̄, s))], (9)

where γ+ and γ− have the form required by definition 1. In particular, they
satisfy the consistency condition.

The proof of this theorem can be obtained from particular construction steps
for the definition of the view. We consider the steps corresponding to those cases
appearing in the transformation of the view definition into a prenex disjunctive
normal form, whose basic conjuncts are tables, negations of tables and formulas
without state terms. More specifically, we consider, according to the bottom–
up construction of the normal form, the following cases and in the following
order (1) the negation of a table, (2) the conjunction of formulas having a
aeSSA, (3) the conjunction of a formula having a aeSSAwith a formula without
state terms, (4) the disjunction of formulas having aeSSAs, but treated in terms
of negations and conjunctions, (5) the quantifications on individuals.

Notice that this way of proving the theorem does not entail that in order
to obtain SSA for a view, a preliminary transformation into prenex disjunctive
normal form is necessary. A better way of achieving this would be to have a list of
the resulting aeSSAs for all possible logical combinations of tables and formulas
without state terms. Most of the cases are given below, and the remaining cases
could be computed from them.

Before considering the inductive steps we mentioned before, we need a tech-
nical definition.

Definition 2. Given a SC formula γ, we will denote by Acc(γ) the set of
action names appearing in it.

208 Marcelo Arenas and Leopoldo Bertossi

Example 5. (cont’d) Consider the aeSSA for Enrolled and Grade shown in ex-
ample 4. In that case, Acc(γ+) = {register}, Acc(γ−) = {drop}, Acc(δ+) =
{change}, Acc(δ−) = {change}. 2

This definition will be used in connection with aeSSAs, that, according to defi-
nition 1 and without loss of generality, require that each action name appears at
most once in each of the γs, with all its arguments being existentially quantified
variables and not shared with other actions in the same γ. For example, if the
formula a = enroll(john)∨a = enroll(mary)∨a = register(x) were a candidate
to appear as a γ in an aeSSA, it could be replaced by ∃y(a = enroll(y) ∧ (y =
john ∨ y = mary)) ∨ ∃u(a = register(u) ∧ u = x).

Proposition 1. If a table P has the following aeSSA in the specification Σ

∀(a, s)Poss(a, s) ⊃ ∀x̄ [P (x̄, do(a, s)) ≡ γ+(a, x̄, s) ∨
P (x̄, s) ∧ ¬γ−(a, x̄, s)], (10)

then the following holds:

Σ |= ∀(a, s)Poss(a, s) ⊃ ∀x̄[¬P (x̄, do(a, s)) ≡ γ−(a, x̄, s) ∨
¬P (x̄, s) ∧ ¬γ+(a, x̄, s)],

(11)

Σ |= ∀(a, x̄, s)[γ−(a, x̄, s) ⊃ ¬γ+(a, x̄, s)]. (12)

We can see from (11) that the derived predicate ¬P inherits an aeSSA from the
aeSSA for table P . By (12), it also inherits the satisfaction of the consistency
condition.

Proposition 2. If specification Σ contains the following aeSSAs for the tables
P (x̄, s) and Q(ȳ, s)

∀(a, s)Poss(a, s) ⊃ ∀x̄ [P (x̄, do(a, s)) ≡ γ+(a, x̄, s) ∨
P (x̄, s) ∧ ¬γ−(a, x̄, s)],

(13)

∀(a, s)Poss(a, s) ⊃ ∀ȳ [Q(ȳ, do(a, s)) ≡ δ+(a, ȳ, s) ∨
Q(ȳ, s) ∧ ¬δ−(a, ȳ, s))],

(14)

then

Σ |= ∀(a, s)Poss(a, s) ⊃ ∀(x̄, ȳ)[P (x̄, do(a, s)) ∧Q(ȳ, do(a, s)) ≡
ξ+(a, x̄, ȳ, s) ∨ (P (x̄, s) ∧Q(ȳ, s) ∧ ¬ξ−(a, x̄, ȳ, s))] (15)

and

Σ |= ∀(a, x̄, ȳ, s)[ξ+(a, x̄, ȳ, s) ⊃ ¬ξ−(a, x̄, ȳ, s)]. (16)

The Dynamics of Database Views 209

Here ξ+(a, x̄, ȳ, s) is equal to
∨

A∈Acc(γ+)∩Acc(δ+)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧ ϕδ+A (x̄A, ȳ, s))

∨
∨

A∈Acc(γ+)−Acc(δ−)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧Q(ȳ, s))

∨
∨

A∈Acc(γ+)∩Acc(δ−)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧ ¬ϕδ−A (x̄A, ȳ, s) ∧Q(ȳ, s))

∨
∨

A∈Acc(δ+)−Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ϕδ+A (x̄A, ȳ, s) ∧ P (x̄, s))

∨
∨

A∈Acc(δ+)∩Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ϕδ+A (x̄A, ȳ, s) ∧ ¬ϕγ
−
A (x̄A, x̄, s) ∧ P (x̄, s))

and ξ−(a, x̄, ȳ, s) is equal to γ−(a, x̄, s) ∨ δ−(a, ȳ, s).

Although the derived SSA has not a simple form, it has a clear intuitive contents.
In order for P ∧Q to be true at the successor state, there are five possible cases
corresponding to the five disjuncts in the formula above: (a) both P and Q
became true, (b) P became true and Q was true and did not change because
the action cannot falsify it, (c) P became true and Q was true and did not
change because, even when the action could falsify it, the precondition for this
falsification was not satisfied, (d) and (e) are the same as (b) and (c), resp., but
exchanging the roles of P and Q.

Proposition 3. If in Σ there is the following aeSSA for a table P (x̄, s)

∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ≡ γ+(a, x̄, s)∨(P (x̄, s)∧¬γ−(a, x̄, s))],

and ψ(x̄) is a formula that contains no state or actions terms, then it holds

Σ |= ∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ∧ ψ(x̄) ≡
∨

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧ ψ(x̄)) ∨ (P (x̄, s) ∧ ψ(x̄) ∧ ¬γ−(a, x̄, s))].

Σ |= ∀(a, x̄, s)[
∨

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧ ψ(x̄)) ⊃ ¬γ−(a, x̄, s)].

This proposition has a straightforward proof. It considers the case of a view
defined by a selection according to the condition ψ. The last statement in it
corresponds to the consistency condition. Notice that this case cannot be ob-
tained from proposition 2, because there is no aeSSAfor ψ. Nevertheless, if one
artificially introduces a situational argument in it and considers a trivial SSA
of the form Poss(a, s) ⊃ ψ(x̄, do(a, s)) ≡ ψ(x̄, s), this case can be derived from
proposition 2.

210 Marcelo Arenas and Leopoldo Bertossi

For the case of the universal quantification of some of the variables in a table,
we have the following

Proposition 4. If the table P has the following aeSSA in the specification Σ

∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ≡ γ+(a, x̄, s) ∨
P (x̄, s) ∧ ¬γ−(a, x̄, s)], (17)

where x̄ = (x1, . . . , xi−1, x, xi+1, . . . , xn). Let x̄′ := (x1, . . . , xi−1, xi+1, . . . , xn).
It holds

Σ |= ∀(a, s)Poss(a, s) ⊃ ∀x̄′[∀xP (x̄, do(a, s)) ≡ ξ+(a, x̄′, s) ∨
∀xP (x̄, s) ∧ ¬ξ−(a, x̄′, s)]

(18)

Σ |= ∀(a, x̄′, s)[ξ+(a, x̄′, s) ⊃ ¬ξ−(a, x̄′, s)], (19)

where ξ+(a, x̄′, s) is equal to
∨

A∈Acc(γ+)−Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ∀x(¬P (x̄, s) ⊃ ϕγ
+

A (x̄A, x̄, s)))

∨
∨

A∈Acc(γ+)∩Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ∀x[(¬P (x̄, s) ⊃ ϕγ
+

A (x̄A, x̄, s))

∧

(P (x̄, s) ⊃ ¬ϕγ−A (x̄A, x̄, s))]),

and ξ−(a, x̄′, s) is equal to
∨

A∈Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ∃xϕγ−A (x̄A, x̄, s)).

The obtained SSA has also a natural intuitive contents. It is possible to under-
stand formula ξ+ by considering its two cases: (a) ∀x P becomes true at the
successor state if the action can only make P true and for every individual for
which P was false, the action made P true, (b) the action can make P true or
false, but for every individual for which P was false, it made P true, and for
every individual for which P was true, the action did not change P . In the case
of ξ−, ∀x P becomes false at the successor state if the action can make P false
and at least for one individual this happens.

Other logical cases can be handled as usual, in terms of the previous cases.
In particular, the case of a projection as the existential quantification of a table
is covered by the following

Corollary 1. Let P be a table in a specification Σ with aeSSA:

∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ≡ γ+(a, x̄, s) ∨
P (x̄, s) ∧ ¬γ−(a, x̄, s)], (20)

The Dynamics of Database Views 211

where x̄ = (x1, . . . , xi−1, x, xi+1, . . . , xn). Let x̄′ := (x1, . . . , xi−1, xi+1, . . . , xn).
It holds

Σ |= ∀(a, s)Poss(a, s) ⊃ ∀x̄′[∃xP (x̄, do(a, s)) ≡ ξ+(a, x̄′, s) ∨
∃xP (x̄, s) ∧ ¬ξ−(a, x̄′, s)]

(21)

Σ |= ∀(a, x̄′, s)[ξ+(a, x̄′, s) ⊃ ¬ξ−(a, x̄′, s)], (22)

where ξ+(a, x̄′, s) is equal to
∨

A∈Acc(γ+)

∃x̄A(a = A(x̄A) ∧ ∃xϕγ+

A (x̄A, x̄, s)),

and ξ−(a, x̄′, s) is equal to
∨

A∈Acc(γ−)−Acc(γ+)

∃x̄A(a = A(x̄A) ∧ ∀x(P (x̄, s) ⊃ ϕγ
−
A (x̄A, x̄, s)))

∨
∨

A∈Acc(γ−)∩Acc(γ+)

∃x̄A(a = A(x̄A) ∧ ∀x[(P (x̄, s) ⊃ ϕγ
−
A (x̄A, x̄, s))

∧

(¬P (x̄, s) ⊃ ¬ϕγ+

A (x̄A, x̄, s))]).

Views defined by joins of tables can also be reduced to the already considered
cases.

Example 6. It is interesting to notice that the consistency condition still holds
for the aeSSA of an “inconsistent” view, that is an empty view of the form
V (x̄, s) ≡df P (x̄, s) ∧ ¬P (x̄, s). In fact, if P has the SSA

Poss(a, s) ⊃ P (x̄, do(a, s)) ≡ γ+(x̄, a, s) ∨ P (x̄, s) ∧ ¬γ−(x̄, a, s),

and we apply the above methodology to the table P (x̄, s)∧¬P (x̄, s), we generate
a SSA of the form

Poss(a, s) ⊃ P (x̄, do(a, s)) ∧ ¬P (x̄, do(a, s)) ≡ δ+(x̄, a, s) ∨
P (x̄, s) ∧ ¬P (x̄, s) ∧ ¬δ−(x̄, a, s), (23)

with δ+(x̄, a, s) = γ+(x̄, a, s) ∧ γ−(x̄, a, s). By the consistency condition for P ,
we have that δ+ is an inconsistent formula, and since the consistency condition
for P ∧ ¬P is of the form δ+ ⊃ ¬δ−, we may conclude that the consistency
condition for P ∧ ¬P also holds. 2

Theorem 1 can be obtained from the propositions above. The next example
illustrates the theorem and the combination of the different cases considered in
the given propositions.

212 Marcelo Arenas and Leopoldo Bertossi

Example 7. (cont’d) We want to store the information about courses that are
passed by officially registered students. We define a new table, V1, as follows:

∀(stu, c, s)[V1(stu, c, s) ≡
∃g(Enrolled(stu, c, s) ∧Grade(stu, c, g, s) ∧ g ≥ 50)]. (24)

For including this view in our specification, we add to the initial database, Σ0,
the sentence:

∀(stu, c)[V1(stu, c, S0) ≡
∃g(Enrolled(stu, c, S0) ∧Grade(stu, c, g,S0) ∧ g ≥ 50)]. (25)

Next we compute an aeSSA for V1. For this, we apply first proposition 2 to
Enrolled(stu, c, s) ∧ Grade(stu, c, g, s). In this case Acc(γ+) ∩ Acc(δ+) = ∅,
Acc(γ+)−Acc(δ−) = {register}, Acc(γ+) ∩Acc(δ−) = ∅, Acc(δ+)−Acc(γ−) =
{change}, Acc(δ+) ∩ Acc(γ−) = ∅, then from the specification it follows that,
for every action a that is possible in a state s:

Enrolled(stu, c, do(a, s)) ∧Grade(stu, c, g, do(a, s)) ≡
[∃(x1, x2)(a = register(x1, x2) ∧ x1 = stu ∧ x2 = c ∧ grade(stu, c, g, s)) ∨
∃(y1, y2, y3)(a = change(y1, y2, y3) ∧ y1 = stu ∧ y2 = c

∧ y3 = g ∧ Enrolled(stu, c, s)) ∨
(Enrolled(stu, c, s) ∧Grade(stu, c, g, s) ∧

¬(∃(x3, x4)(a = drop(x3, x4) ∧ x3 = stu ∧ x4 = c) ∨
∃(y4, y5, y6)(a = change(y4, y5, y6) ∧ y4 = stu ∧ y5 = c ∧ y6 6= g)))].

Next, we apply proposition 3 to Enrolled(stu, c, s)∧Grade(stu, c, g, s)∧ g ≥ 50.
Using the previous formula we obtain that for every legal action a in a state s:

Enrolled(stu, c, do(a, s)) ∧Grade(stu, c, g, do(a, s)) ∧ g ≥ 50 ≡
[∃(x1, x2)(a = register(x1, x2) ∧ x1 = stu ∧ x2 = c ∧

Grade(stu, c, g, s) ∧ g ≥ 50) ∨
∃(y1, y2, y3)(a = change(y1, y2, y3) ∧ y1 = stu ∧ y2 = c ∧

y3 = g ∧ Enrolled(stu, c, s) ∧ g ≥ 50) ∨
(Enrolled(stu, c, s) ∧Grade(stu, c, g, s) ∧ g ≥ 50 ∧

¬(∃(x3, x4)(a = drop(x3, x4) ∧ x3 = stu ∧ x4 = c) ∨
∃(y4, y5, y6)(a = change(y4, y5, y6) ∧ y4 = stu ∧ y5 = c ∧ y6 6= g)))].

The Dynamics of Database Views 213

Finally, if we apply corollary 1 to ∃g(Enrolled(stu, c, s)∧Grade(stu, c, g, s)∧g ≥
50) in the previous formula, we obtain the following aeSSA for V1:

∀(a, s)Poss(a, s) ⊃ ∀(stu, c)[V1(stu, c, do(a, s)) ≡
∃(x1, x2)(a = register(x1, x2) ∧ ∃g(x1 = stu ∧ x2 = c ∧

Grade(stu, c, g, s) ∧ g ≥ 50)) ∨
∃(y1, y2, y3)(a = change(y1, y2, y3) ∧ ∃g(y1 = stu ∧ y2 = c ∧

y3 = g ∧ Enrolled(stu, c, s) ∧ g ≥ 50)) ∨
V1(stu, c, s) ∧

¬(∃(x3, x4)(a = drop(x3, x4) ∧ ∀g((Enrolled(stu, c, s) ∧
Grade(stu, c, g, s) ∧ g ≥ 50) ⊃ x3 = stu ∧ x4 = c) ∨

∃(y4, y5, y6)(a = change(y4, y5, y6) ∧ ∀g((Enrolled(stu, c, s) ∧
Grade(stu, c, g, s) ∧ g ≥ 50) ⊃ y4 = stu ∧ y5 = c ∧ y6 6= g) ∧

∀g(¬(Enrolled(stu, c, s) ∧Grade(stu, c, g, s) ∧ g ≥ 50) ⊃
¬(y4 = stu ∧ y5 = c ∧ y6 = g)))))].

2

6 View Definitions as Integrity Constraints

In the previous section we considered the problem of obtaining suitable SSAs for
views from the definition of the view. Nevertheless, the way in which we will use
that derived information is as follows: Starting from the original specification,
Σ, we will not consider explicit definitions of the views, but we will add to Σ the
new SSAs plus definitions of the new virtual tables at the initial state. And then
we hope that the right (and intended) logical relations between the views defined
by SSAs and the base tables can be ensured along the database evolution.

This way of proceeding is consistent with Reiter’s approach of not considering
explicit state (integrity) constraints in the specifications [Re2]: State constraints
should be entailed by the specification (see [LR1,Pi1] for more on this issue).
Since view definitions can be seen as state constraints, the definitions should be
implicit in the new specification.

More precisely, a static integrity constraint that is satisfied through the evo-
lution of the database specified by Σ is a SC formula, ϕ(s), that is simple in
s, contains no action terms and no free variables for domain individuals, and
Σ |= ∀s(S0 ≤ s ⊃ ϕ(s)). Since usual view definitions, i.e. of the form (7),
could be seen as static ramifications constraints, we would expect to derive this
explicit definition as an integrity constraint of the specification enriched with
the new SSAs for the views.

Theorem 2. Let V (x̄, s) be a view defined by a formula ψ(x̄, s), and let (9)ψ,
the axiom obtained from (9) by replacing ψ by V everywhere, be added to the
specification of the database as the SSA for V . It holds

Σ ∪ {(9)ψ} ∪ {∀x̄[V (x̄, S0) ≡ ψ(x̄, S0)]} |= ∀s(S0 ≤ s ⊃ V (x̄, s) ≡ ψ(x̄, s)).

214 Marcelo Arenas and Leopoldo Bertossi

Formula (9)ψ tells us that the aeSSA for the view V (x̄, s) defined by the formula
ψ(x̄, s) is:

∀(a, s)Poss(a, s) ⊃ ∀x̄[V (x̄, do(a, s)) ≡ ξ+(a, x̄, s) ∨
V (x̄, s) ∧ ¬ξ−(a, x̄, s)], (26)

where ξ+ and ξ− are constructed from the SSAs for the base tables appearing
in ψ as shown in section 5. For following applications, we stress the fact that
formulas ξ+(a, x̄, s) and ξ−(a, x̄, s) contain only base tables (or other previously
defined views) evaluated at the execution state s, (in)equalities between domain
individuals, and equalities between the action variable a and instantiations of
actions names existing in the original language. By the UNAA, any instantiation
of a in those formulas by means of an action name will make all the (in)equalities
between actions disappear.

The theorem establishes that the intended logical condition for a view, ac-
tually its explicit definition, is a state constraint that is implicit in the original
specification of the database dynamics extended with the new SSAs. As such,
it holds at all legal states of the database. This can be proved by induction on
states. For this purpose, the following derived induction principle [Re3] can be
applied

∀P ([P (S0) ∧ ∀s∀a(P (s)∧Poss(a, s) ⊃ P (do(a, s))] ⊃ ∀s(S0 ≤ s ⊃ P (s))).

7 View Maintenance Supported by SSAs

We could materialize the views by keeping extensional physical tables containing
the entries that satisfy the view definitions. View maintenance is the problem of
updating such a materialized views [GS1].

From our derived specification of the evolution of a database view V in terms
of a aeSSA of the form (26), we can produce an algorithm for the automated
maintenance of V . First we start with a materialization of the view at the initial
state, that is, using the view definition and the initial base tables. Now, the
aeSSA for V explicitly shows which are the primitive transactions that may
affect the view and in what conditions. Then, in the presence of a given primi-
tive transaction that updates some of the base tables, the algorithm can check
whether the transaction appears among the candidate transactions to change the
view, what can be read from the SSAs, and, in the positive case, whether the
associated conditions are met, in which case the update in the view is computed
as indicated by the SSA.

This algorithm reacts to the transactions updating the base tables, rather
than to the changes in the base tables. Actually, changes in the base tables are
not considered, but only the transactions, the base tables, and the view itself
at the previous (execution) state. In that sense this is not an incremental view
maintenance algorithm [GS1].

The Dynamics of Database Views 215

7.1 An Example from Relational Algebra

We will illustrate with an example from relational algebra how to apply the re-
sults obtained in section 5 to the generation of procedures for view maintenance.

It is possible to rewrite every relational expression using first order logic.
Actually, it can be seen as a view defined in the SC. Thus, we can obtain an
aeSSA for this new virtual table if we have aeSSAs for the base tables. In the
most simple cases of relational databases we are allowed to insert and remove
tuples from base tables. Then such a table, P , will have an aeSSA mentioning
insertP and deleteP as primitive transactions:

∀(a, s)Poss(a, s) ⊃ ∀x̄[P (x̄, do(a, s)) ≡ ∃ū(a = insertP (ū) ∧ ū = x̄) ∨
P (x̄, s) ∧ ¬∃v̄(a = deleteP (v̄) ∧ v̄ = x̄)].

(27)

Now, suppose a view is defined using the relational expression P (x̄) ./θ(x̄,ȳ) P (ȳ),
where x̄ and ȳ do not have variables in common. By the results obtained in
section 5, we obtain the following aeSSA for the new table (P ./θ P)(x̄, ȳ, s):

∀(a, s)Poss(a, s) ⊃∀(x̄, ȳ)[(P ./θ P)(x̄, ȳ, do(a, s)) ≡
∃ū(a = insertP (ū) ∧ [(ū = x̄ ∧ ū = ȳ ∧ θ(x̄, ȳ)) ∨

(ū = x̄ ∧ P (ȳ, s) ∧ θ(x̄, ȳ)) ∨ (ū = ȳ ∧ P (x̄, s) ∧ θ(x̄, ȳ))]) ∨
(P ./θ P)(x̄, ȳ, s) ∧ ¬∃v̄(a = deleteP (v̄) ∧ (v̄ = x̄ ∨ v̄ = ȳ))].

From this axiom it is possible to derive a maintenance procedure for the new ta-
ble. It is shown in figure 2. Notice that the translation of the aeSSA for (P ./θ P)
into the maintenance procedure is direct and uses much information taken from
the different components of the SSA. For example, it shows which base tables
are necessary to consider for updating (P ./θ P) when we add a tuple or when
we remove a tuple from a base table. The procedure (and the SSA) show that
the table (P ./θ P) is self-maintainable [GS1] with respect to deletions.

Clearly, the language of situation calculus allow us to consider more interesting
primitive transactions than the ones in this example, for example, updateP (x̄, ȳ),
that is “update x̄ to ȳ in table P”, or more complex primitive transactions spec-
ified by the user; and also more complex view definition constructs.

8 Checking and Proving Integrity Constraints

One interesting relationship between views and integrity constraints has to do
with using view maintenance to check integrity constraint satisfaction (see ref-
erences in [GS1]). We will illustrate how this problem connects with our treat-
ment of views by considering the case of a static integrity constraint of the
form ∀x̄ϕ(x̄, s), where ϕ is a formula simple in s and quantifier free. For ex-
ample, a functional dependency is of this form. Now, let us define a view by
∀x̄[V (x̄, s) ≡ ¬ϕ(x̄, s)]. We expect V (x̄, s) to be always an empty table, i.e.

216 Marcelo Arenas and Leopoldo Bertossi

procedure Maintenance(A:action)
begin

if A= insertP (w̄) then
if θ(w̄, w̄) holds then

Add the tuple (w̄, w̄) to (P ./θ P);
for each tuple ȳ such that P (ȳ) ∧ θ(w̄, ȳ) holds do

Add the tuple (w̄, ȳ) to (P ./θ P);
for each tuple x̄ such that P (x̄) ∧ θ(x̄, w̄) holds do

Add the tuple(x̄, w̄) to (P ./θ P);
else if A = deleteP (w̄) then

Remove each tuple (x̄, w̄) and (w̄, ȳ) from (P ./θ P);
end

Fig. 2. Procedure for maintaining the view (P ./θ P).

V (s) = ∅. Using our previous results, we can derive an aeSSA for V of the form
(26). Let us denote it by SSAV . Then it holds Σ |= ∀s(S0 ≤ s ⊃ ∀x̄ϕ(x̄, s))
iff Σ ∪ {SSAV , ∀x̄[V (x̄, S0) ≡ ¬ϕ(x̄, S0)]} |= ∀s(S0 ≤ s ⊃ ¬∃x̄V (x̄, s)).

It is clear that we can check the IC by checking whether V is empty, but
we can also prove that the IC holds at every accessible state by proving that
V (s) is empty at every such state. This second case will be possible iff the
original specification Σ entails the IC. In the case of IC checking, even if the
IC is not entailed by the specification, we can be interested in checking it when
concrete transactions are executed. For both the IC checking problem and the
IC proving problem, we assume the the IC is satisfied at the execution state.
This corresponds in the IC proving case to a proof by induction on states for
arbitrary transactions supported by V ’s SSA: If this is (26), then in the inductive
step we can assume that V (s) is empty, so in order to check V (x̄, do(a, s)), we
need to check that ξ+(a, x̄, s) in (26) is empty., i.e. no x̄ makes it true. Because
of the form of ξ+ we can do case analysis on the (finite number of) transaction
names appearing in it, verifying that for each of them we do not obtain any
tuples x̄ satisfying ξ+. In the case of a successful IC proof the ξ+(a, x̄, s) will be
identically false for any possible action a. In the case of a successful IC checking
step, it will become false of the particular executed transaction.

8.1 The Case of Functional Dependencies

We will consider the particular case of a functional dependency of the form9

∀(x, y, z, s)[S0 ≤ s ⊃ (F (x, y, s) ∧ F (x, z, s) ⊃ y = z)]. (28)

The problem of proving it reduces to the problem of proving that the view

∀(x, y, z, s)[V (x, y, z, s) ≡def F (x, y, s) ∧ F (x, z, s) ∧ y 6= z] (29)

9 We are grateful to Pablo Saez for helping us with this section.

The Dynamics of Database Views 217

is empty at all accessible states. That is, if V has a SSA of the form:

Poss(a, s) ⊃ ∀(x, y, z)[V (x, y, z, do(a, s)) ≡ ξ+(a, x, y, z, s) ∨
V (x, y, z, s) ∧ ¬ξ−(a, x, y, z, s)],

then all we need is to prove that if Poss(a, s) holds, then ξ+(a, x, y, z, s) is
identically false. With the results of the previous sections, we can obtain such a
SSA for V : If table F ’s SSA is

Poss(a, s) ⊃ ∀(x, y)[F (x, y, do(a, s)) ≡ γ+(a, x, y, s)∨(F (x, y, s)∧¬γ−(a, x, y, s)),

then the expression ξ+(a, x, y, z, s) in V ’s SSA is:

[
∨

A∈Acc(γ+)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x, y, s) ∧ ϕγ
+

A (x̄A, x, z, s))

∨
∨

A∈Acc(γ+)∩Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ((ϕγ
+

A (x̄A, x, y, s) ∧ ¬ϕγ
−
A (x̄A, x, z, s)∧

F (x, z, s)) ∨ (ϕγ
+

A (x̄A, x, z, s) ∧ ¬ϕγ
−
A (x̄A, x, y, s) ∧ F (x, y, s))))

∨
∨

A∈Acc(γ+)−Acc(γ−)

∃x̄A(a = A(x̄A) ∧ ((ϕγ
+

A (x̄A, x, y, s) ∧ F (x, z, s))∨

(ϕγ
+

A (x̄A, x, z, s) ∧ F (x, y, s))))] ∧ y 6= z.

We can prove that this expression is identically false by case analysis, that is,
by instantiating the expression with every action symbol A(x̄A) (in a generic
way), and then applying UNAA. In this way, and assuming that A ∈ Acc(γ+)∩
Acc(γ−), we get the following expression for ξ+(A(x̄A), x, y, z, s):

[ϕγ
+

A (x̄A, x, y, s) ∧ ϕγ
+

A (x̄A, x, z, s) ∨
ϕγ

+

A (x̄A, x, y, s) ∧ ¬ϕγ
−
A (x̄A, x, z, s) ∧ F (x, z, s) ∨

ϕγ
+

A (x̄A, x, z, s) ∧ ¬ϕγ
−
A (x̄A, x, y, s) ∧ F (x, y, s))] ∧ y 6= z.

(30)

If instead A ∈ Acc(γ+)−Acc(γ−), we can make ϕγ
−
A (x̄A, x, z, s) identically false,

getting the same result as (30).
We need to prove that (30) is identically false, that is:

ϕγ
+

A (x̄A, x, y, s) ∧ ϕγ
+

A (x̄A, x, z, s) ⊃ y = z (31)

and:

ϕγ
+

A (x̄A, x, y, s) ∧ ¬ϕγ
−
A (x̄A, x, z, s) ∧ F (x, z, s) ⊃ y = z. (32)

A third subgoal should be equivalent to the second one.

218 Marcelo Arenas and Leopoldo Bertossi

We can conclude that, in order to prove (28), we can prove (31) and (32)
for every action symbol A in Acc(γ+), assuming the hypothesis Poss(A(x̄A), s).
This can be carried out if we have a concrete SSA for F and concrete precondition
axioms.

Example 8. We will illustrate the previous ideas with an example of a database
with a table of objects with their colors. Here Color (x, y, s) means that object x
has color y at the state s. We also have a primitive transaction paint(x, y), that
modifies x’s color to y. Assume that the following effect axioms are available (or
can be recovered from already existing aeSSAs):

∀(x, y, s)[Poss(paint(x, y), s) ⊃ Color (x, y, do(paint(x, y), s))],
∀(x, y, y′, s)[Poss(paint(x, y′), s) ∧ y 6= y′ ⊃ ¬Color (x, y, do(paint (x, y′), s))].

That is, we have the following aeSSA for Color:

∀(a, s)Poss(a, s) ⊃ ∀(x, y)[Color (x, y, do(a, s)) ≡
∃(u, v)(a = paint(u, v) ∧ u = x ∧ v = y) ∨
Color (x, y, s) ∧ ¬∃(u, v)(a = paint(u, v) ∧ u = x ∧ v 6= y)].

Let us further assume that it is always possible to execute action paint:

∀(x, y, s)[Poss(paint(x, y), s) ≡ True]. (33)

We expect to satisfy the constraint stating that each object has only one color
in every state:

∀s[S0 ≤ s ⊃ ∀(x, y, z) (Color (x, y, s) ∧ Color (x, z, s) ⊃ y = z)].

To prove this integrity constraint we instantiate (31) and (32) using the aeSSA
for Color , obtaining:

(u = x ∧ v = y ∧ u = x ∧ v = z) ⊃ y = z, (34)
(u = x ∧ v = y ∧ ¬(u = x ∧ v 6= z) ∧ Color (x, y, s)) ⊃ y = z. (35)

Thus, we need to prove that the specification entails:

(u = x ∧ v = y ∧ v = z) ⊃ y = z, (36)
(u = x ∧ v = y ∧ v = z ∧ Color (x, y, s)) ⊃ y = z, (37)

what is straightforward. 2

The kind of analysis we have presented for proving/checking ICs is reminiscent
of Nicolas’ methodology for checking an IC on the assumption that the IC is
already satisfied before the transaction execution [Ni1], what allows to simplify
the condition to be checked. A detailed analysis of Nicolas’ methodology in the
context of our specifications of database updates and a proof that its reconstruc-
tion in the SC setting coincides with the methodology presented in this section
can be found in [Sa1]. Direct methodologies for proving ICs by induction in our
SC scenario which have similar characteristics are reported in [Be2,Sa1].

The Dynamics of Database Views 219

9 Embedding Integrity Constraints

Both [LR1] and [Pi1] consider the problem of embedding a desirable static IC,
say ∀s (S0 ≤ s ⊃ ψ(s)), where ψ(s) has no free variables for individuals, into
the given specification in such a way that it does not appear explicitly in the
specification, but implicitly in the sense that it logically follows from the spec-
ification. The new specification should still have the form indicated at the end
of section 2.

The IC can be solved à la qualification, that is, action preconditions are
made stronger, and this is always possible as shown in [LR1]. ICs can also be
solved à la ramification, that is by modifying the effect axioms that are implicit
but traceable in a specification based on aeSSAs. There is no general solution for
this option, but some syntactic cases of ICs, that is of ψ(s) above, e.g. functional
dependencies, are solved in [Pi1].

We can show that our treatment of views can be used to give an easy and
general alternative solution to the problem of embedding an IC á la qualification.
This is done by defining a “propositional” view ψ(s). If the specification Σ is
such that all base tables have aeSSAs, then it is possible to derive an aeSSA for
ψ(s):

∀(a, s)Poss(a, s) ⊃ [ψ(do(a, s)) ≡
∨

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, s))

∨ ψ(s) ∧ ¬
∨

B

∃x̄B(a = B(x̄B) ∧ ϕγ−B (x̄B, s))].

Since we want ψ(s) to be true for all accessible states, we have to further con-
straint the actions that can make it false. Then, for each action B mentioned in
γ−, we change its precondition axiom from

∀(x̄B , s)[Poss(B(x̄B), s) ≡ ΠB(x̄B , s)].

to

∀(x̄B , s)[Poss(B(x̄B), s) ≡ ΠB(x̄B , s) ∧ ¬ϕγ
−
B (x̄B , s)].

In this way we generate a new specification Σ′, which entails ∀s[S0 ≤ s ⊃ ψ(s)].

Example 9. Let us consider the specification given in the example 8. Suppose
that we expect to satisfy the constraint saying that two different objects cannot
have the same color:

∀s[S0 ≤ s ⊃ ∀(x1, x2, y) (Color (x1, y, s) ∧Color (x2, y, s) ⊃ x1 = x2)].

In order to embed this IC in the specification, we generate the following view:

∀s[V (s) ≡ ∀(x1, x2, y)(Color (x1, y, s) ∧ Color (x2, y, s) ⊃ x1 = x2)],

220 Marcelo Arenas and Leopoldo Bertossi

which, by the previous results, turns out to have the following SSA:

∀(a, s)Poss(a, s) ⊃ V (do(a, s)) ≡ γ+(a, s) ∨ (V (s) ∧ ¬γ−(a, s)),

where

γ−(a, s) = ¬∃(u, v)[a = paint(u, v) ∧ ∃(x1, x2, y)(v = y ∧ x1 6= x2∧
((u = x1 ∧ Color (x2, y, s)) ∨ (u = x2 ∧ Color (x1, y, s)))].

Finally, considering the γ− part of this SSA for the view and formula (33), we
obtain the following new precondition axiom for the primitive transaction paint:

∀(u, v, s)[Poss(paint(u, v), s) ≡ ¬∃(x1, x2, y)(v = y ∧ x1 6= x2 ∧
((u = x1 ∧ Color (x2, y, s)) ∨ (u = x2 ∧ Color (x1, y, s))))].

2

For embedding ICs of the form ∀s(S0 ≤ s ⊃ ∀x̄ϕ(x̄, s)), like functional de-
pendencies, an alternative methodology could be based on further constraining
the actions that may introduce tuples into the hopefully empty view V (x̄, s) ≡df

¬ϕ(x̄, s), as in section 8. In the extended version of this paper we compare our
methodology with that of Lin and Reiter.

10 Conclusions, Related Issues, and Outlook

1. We have managed to derive action–effect based successor state axioms for
database views from similar axioms for the base tables. Having such SSAs has
several advantages: (1) We can update the view without appealing to the changes
in other tables. (2) If we compute the new extension of a view from the other
tables using only its definition, we are not really updating explicitly the view,
but recomputing the whole contents of the table. And, if we do not want to pro-
ceed this way, we need to derive algorithms for computing differences of tables,
including the view [GS1]. The approach based on aeSSAs does not have these
problems. (3) All this becomes more complicated if the base tables are only
virtually updated, or only the update transaction logs are kept. This situation
appear frequently in applications of Reiter’s formalism [AB1]. (4) Having an ex-
plicit action–effect based SSA for a view makes a materialization of the view as
a physical table easy. We might be interested in doing this for the usual reasons
in databases, and also for rolling forward [LR2] the virtually updated database.
As said before, the materialization does not use the updated base tables, but
the tables at the previous state. So, this is a form of deferred materialization.
(5) Having such a SSA available makes possible doing hypothetical reasoning
about the view. In general, all the possibilities of reasoning based on SSAs that
are open to the base tables become available for the views as well [AB1]. (6)
It might be the case that, for security reasons or by limitations of the query
language [Im1], a user has a restricted access to the database through particular

The Dynamics of Database Views 221

views. So, without seeing the whole database, that user would be interested in
knowing how transactions affect his/her particular views and in reasoning about
their changes. This becomes possible with appropriate SSAs for the views. (7)
At the knowledge representation level, we have an explicit solution to the frame
problem for views and we know exactly how this solution is inherited from the
solution for the base tables.

2. We proved that the derived SSAs satisfy a natural consistency condition
if the SSAs for the base tables do.

3. We established that adding the right SSAs for the views to the database
specification allows us to obtain the intended and explicit view definitions as
static integrity constraints of the database.

4. We have seen how to produce an algorithm for view maintenance that relies
on the derived aeSSA for the view, the executed transactions and the contents
of the database at the execution state. We also related the problem of view up-
dates with the problems of integrity constraint checking and proving. We also
gave a new solution to the problem of embedding ICs into the specification.

5. There are several open problems related to the subjects in this paper that
have not been addressed in this paper and should be subjects of further research.
Some of them are the following:
(1) We have not considered the problem of generating aeSSA for recursive views.

To consider an example, we cannot expect the transitive closure TCR of a
relation R to have a aeSSA of the form (26). If this were the case, then we
could start with an empty relation R at the initial state, an empty TCR,
and execute at S0 an action A that populates the table R. In this case, we
would have ∀x̄(TCR(x̄, do(A,S0)) ≡ ξ+(A, x̄, S0) (because TCR is empty at
S0). By the UNAA, A disappears from the RHS, and becomes a formula in
terms of base tables, i.e. R, (and S0) only, obtaining a first order definition
of the transitive closure, what we know is impossible [GV1].

(2) In this paper, views are explicitly defined by means of arbitrary first order SC
formulas. We have not considered the issue of safeness of the views definitions
[Ul1,VT1]. From the pure logical point of view, all the propositions we gave
wrt to derivation of aeSSAs are correct, but some of them, e.g. proposition 1,
consider cases that may lead to unsafe view definitions in databases. Some
syntactical subclasses of safe views definitions should be treated in more
detail from the general propositions we provided.

(3) Aggregate views and other complex views appearing in data warehousing
and on–line analytical processing (OLAP) [CD1,Zh1] should also be treated.
Also views encoding historical information [Ch1,AB1].

(4) It would be interesting to relate our treatment of views with some work done
on answering queries in terms of database views, as in [Le1,Ra1].

(5) More importantly, we have the impression that our work could have some
interesting consequences on the problem of updating a database through its

222 Marcelo Arenas and Leopoldo Bertossi

views [FC1]. There is at least one case in which we know how to update
the base tables when a view is updated by means of one of the primitive
transactions appearing in its derived aeSSA: All we need to do is to detect
which base tables that action effects and how, by reading their aeSSAs. So,
the other case appears when we add to a view’s aeSSA new actions that may
change a view and we have to propagate the occurrences of those actions to
the aeSSAs for the base tables, while taking into account the view definition
as an integrity constraint.

(6) Also the relationship between our approach and the problem of determining
updates that are relevant to a view [Bl1,Be1,SB1] should be explored.

(7) At the knowledge representation level, it would be interesting to explore
the derivation, with a methodology as presented in [LR1], of a new SSAs
based specification from the explicit definitions of the views, seen as static
ramification constraints. It is not clear that a solution to the problem of
deriving aeSSAs for views can be found in this way, because there is no
general solution so far for the problem of embedding ICs in the specification
via ramification. Along this line, [LR1] already contains an example about
the transitive closure considered as a ramification constraint.

Acknowledgments

This research has been partially supported by FONDECYT (Grants # 1971304
and # 1980945). Part of this work was done while the second author was on
sabbatical at the Technical University of Berlin. He is grateful to Ralf Kutsche
and all the people in the “Computergestüzte Informationssysteme” (CIS) group
for their support and hospitality; and to the Graduierten Kolleg “Verteilte In-
formationssysteme”, the DAAD and the Catholic University of Chile (DIPUC)
for their financial support. The authors are grateful to Javier Pinto and Jorge
Baier for their generous help.

References

AB1. Arenas, M., Bertossi, L.: Hypothetical temporal queries in databases. In
Proc. of the ACM SIGMOD/PODS 5th Workshop on Knowledge Represen-
tation meets databases (KRDB’98), Borgida, A., Chaudhuri, V., Staudt, M.
(eds.) (1998) (http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-10/).

AB2. Arenas, M., Bertossi, L.: The dynamics of database views (extended version).
Can be found as ext-views.ps in http://dcc.ing.puc.cl/∼bertossi/ (1998).

Be1. Bertossi, L., Arenas, M., Ferretti, C.: SCDBR: An automated reasoner for
specifications of database updates. Journal of Intelligent Information Systems
10(3) (1998).

Be2. Bertossi, L., Pinto, J., Saez, P., Kapur, D., Subramaniam, M.: Automating
Proofs of Integrity Constraints in the Situation Calculus. In Foundations of
Intelligent Systems. Proc. Ninth International Symposium on Methodologies
for Intelligent Systems (ISMIS’96). Springer LNAI 1079 (1996) 212–222.

The Dynamics of Database Views 223

Bl1. Blakeley, J., Coburn, N., Larson, P.: Updating derived relations: Detecting
irrelevant and autonomously computable updates”. ACM Transactions on
Database Systems 14 (1989) 369–400.

CD1. Chaudhuri, S., Dayal, U.: An overview of datawarehousing and OLAP tech-
nology. ACM SIGMOD Record 26 (1997) 65–74.

Ch1. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems 20 (1995) 149–186.

Cl1. Clark, K.: Negation as failure. In Gallaire, H., Minker, J. (eds.) Logic and
Data Bases. Plenum Press (1978) 292–322.

FC1. Furtado, A., Casanova, M.: Updating relational views. In Kim, W., Reiner,
D., Batory, D. (eds.) Query Processing in Database Systems. Springer (1985).

GV1. Gaifman, H., Vardi, M.: A simple proof that connectivity of finite graphs is
not first-order definable. Bulletin EATCS 26 (1985) 44–45.

Go1. Godfrey, P., Grant, J., Gryz, J., Minker, J.: Integrity constraints: Semantics
and applications. In Chomicki, J., Saake, G. (eds.) Logics for Databases and
Information Systems. Kluwer (1998).

GS1. Gupta, A., Singh Mumick, I.: Maintenance of materialized views: Problems,
techniques, and applications. IEEE-CS Data Engineering Bulletin 18 (1995)
3–18. Special issue on materialized views and data warehousing.

Im1. Imielinski, T.: Relative knowledge in distributed database (extended abstract).
In Proc. Symposium on Principles of Database Systems (PODS’87), ACM Press
(1987) 197-209.

Le1. Levy, A., Mendelzon, A., Sagiv, Y., Srivastava, D.: Answering queries using
views. In Proc. Symposium on Principles of Database Systems (PODS’95),
ACM Press (1995) 95–104.

LR1. Lin, F., Reiter, R.: State constraints revisited. Journal of Logic and Compu-
tation 4 (1994) 655–678. Special issue on action and processes.

LR2. Lin, F., Reiter, R.: How to progress a database. Artificial Intelligence 92
(1995) 131–167.

MH1. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie (eds.), Machine Intelligence
4, Edinburgh University Press (1969) 463–502.

Ni1. Nicolas, J-M.: Logic for improving integrity checking in relational data bases.
Acta Informatica 18 (1982) 227–253.

Pi1. Pinto, J.: Temporal reasoning in the situational calculus. PhD thesis, Depart-
ment of Computer Science, University of Toronto (1994).

Ra1. Rajaraman, A., Sagiv, Y., Ullman, J.: Answering queries using templates
with binding patterns. In Proc. Symposium on Principles of Database Sys-
tems (PODS’95), ACM Press (1995) 105–112.

Re1. Reiter, R.: The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In Lifschitz, V.
(ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy, Academic Press (1991) 359–380.

Re2. Reiter, R.: On specifying database updates. Journal of Logic Programming 25
(1995) 53–91.

Re3. Reiter, R.: Proving properties of states in the situation calculus. Artificial
Intelligence 64 (1993) 337–351.

Sa1. Saez, P.: Automated proofs of database integrity constraints. PhD thesis,
Catholic University of Chile, School of Engineering, Department of Computer
Science. In preparation.

224 Marcelo Arenas and Leopoldo Bertossi

SB1. Siu, B., Bertossi, L.: Answering historical queries in databases (extended ab-
stract). In Zelkowitz, M., Straub, P. (eds.) Proc. XVI International Conference
of the Chilean Computer Science Society (SCCC’96) (1996).

Ul1. Ullman, J.: Principles of database and knowledge-base systems, Vol. I. Com-
puter Science Press, 1988.

VT1. Van Gelder, A., Topor, R.: Safety and correct translation of relational calculus
formulas. In Proc. ACM Symposium on Database Systems (PODS), ACM Press
(1987) 313–327.

Zh1. Zhuge, Y., Garcia-Molina, H., Widom, J.: View maintenance in a dataware-
housing environment. In Proc. Symposium on Principles of Database Systems
(PODS’96), ACM Press (1996) 316–327.

A Sketch of Proofs

In order not to overload the formulas we will adopt some natural conventions,
e.g. instead of writing

γ+(a, x̄, s) =
∨

A∈Acc(γ+)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s)),

we will simply write

γ+(a, x̄, s) =
∨

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s)).

We will usually denote with M a model of the situation calculus. |M| will
denote the universe of structure M. Then, in this many sorted universe we will
find domain individuals, action and states.

Proofs are only sketched. Complete proofs can be found in [AB2].

Proof of Proposition 2: Let M |= Σ, and C ∈ |M| an action, ē an l-tuple of
objects in |M|, where l is the number of arguments of action C. Let S be a state
in |M|, b̄ an r-tuple of objects in |M|, where r is the number of variables in x̄,
d̄ an u-tuple of objects in |M|, where u is the number of variables in ȳ. Finally,
let σ : {C(ē)

a , b̄x̄ ,
d̄
ȳ ,

S
s }, be an assignment for the variables.

Assume that 〈M, σ〉 |= Poss(a, s). By (13) and (14), and using the distribu-
tivity laws, we conclude that

〈M, σ〉 |= P (x̄, do(a, s)) ∧Q(ȳ, do(a, s)) ≡
γ+(a, x̄, s) ∧ δ+(a, ȳ, s) ∨
γ+(a, x̄, s) ∧Q(ȳ, s) ∧ ¬δ−(a, ȳ, s) ∨
δ+(a, ȳ, s) ∧ P (x̄, s) ∧ ¬γ−(a, x̄, s) ∨
P (x̄, s) ∧Q(ȳ, s) ∧ ¬(γ−(a, x̄, s) ∨ δ−(a, ȳ, s)).

(38)

The first three disjuncts on the RHS in (38) do not have the syntactical form
required by the definition of aeSSA. In order to transform them into parts of a
proper aeSSA, we need to lemmas.

The Dynamics of Database Views 225

Lemma 1. If

γ+(a, x̄, s) =
∨

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s)) (39)

δ+(a, ȳ, s) =
∨

B

∃ȳB(a = B(ȳB) ∧ ϕδ+B (ȳB, ȳ, s)), (40)

where for the action names A and B, x̄A and ȳB do not share variables, then

UNAA |= ∀(a, x̄, ȳ, s)[γ+(a, x̄, s) ∧ δ+(a, ȳ, s) ≡
∨

A∈Acc(γ+)∩Acc(δ+)

∃x̄A (a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧ ϕδ+A (x̄A, ȳ, s))]

This lemma can be proved by observing that γ and δ are disjunctions, then it is
possible to distribute the conjunction. Finally, unique names axioms for actions
can be applied. In the same way, the next lemma can be proved.

Lemma 2. If

γ+(a, x̄, s) =
∨

A

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s)) (41)

δ−(a, ȳ, s) =
∨

B

∃ȳB(a = B(ȳB) ∧ ϕδ−B (ȳB, ȳ, s)), (42)

where every action in Acc(γ+) ∪Acc(δ−) is mentioned in UNAA and Q(ȳ, s) is
a fluent, then from UNAA it is possible to conclude:

∀(a, x̄, ȳ, s)[(γ+(a, x̄, s) ∧Q(ȳ, s) ∧ ¬δ−(a, ȳ, s)) ≡
∨

A∈Acc(γ+)−Acc(δ−)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧Q(ȳ, s)) ∨
∨

A∈Acc(γ+)∩Acc(δ−)

∃x̄A(a = A(x̄A) ∧ ϕγ+

A (x̄A, x̄, s) ∧ ¬ϕδ−A (x̄A, ȳ, s) ∧Q(ȳ, s))]

In order to finish the prove of proposition 2, the satisfaction of the consis-
tency condition has to verified, that is if 〈M, σ〉 |= ξ+(a, x̄, ȳ, s), then 〈M, σ〉 |=
¬ξ−(a, x̄, ȳ, s). As seen from the statement of the proposition, we need to con-
sider five cases arising from ξ+. In all of them the consistency condition holds
from the unique names axioms for actions and the assumption that the base
tables already have SSAs that satisfy the consistency condition.

Proof of Proposition 4: Let M |= Σ, and C ∈ |M| be an action, ē an l-
tuple of objects in |M|, where l is the number of arguments of action C. Let S
be a state in |M|, such that 〈M, σ〉 |= Poss(a, s). Let d1, . . . , di−1, di+1, . . . , dn
be individuals in |M| and let σ : {C(ē)

a , d1x1
, . . . , di−1

xi−1
, di+i

xi+1
, . . . , dn

xn
, Ss }, be a

substitution.

226 Marcelo Arenas and Leopoldo Bertossi

We want to show that 〈M, σ〉 satisfies

∀xP (x1, . . . , xi−1, x, xi+1, . . . , xn, do(a, s)) ≡
ξ+(a, x̄′, s) ∨ (∀xP (x1, . . . , xi−1, x, xi+1, . . . , xn, s) ∧ ¬ξ−(a, x̄′, s)). (43)

In order to prove the equivalence, the two directions of the implication have
to be proved separately. Both of them give rise to different cases depending on
where action C appears, e.g. in Acc(γ+) ∪ Acc(γ−), etc. All the cases can be
proved using unique names axioms for actions.

In order to prove (19), we assume that 〈M, σ〉 |= ξ+(a, x̄′, s). There are two
cases coming from disjuncts in ξ+. Each of them can be treated by means of
unique names axioms for actions and the assumption that the base table P has
a SSA satisfying the consistency condition.

	Introduction
	The Situation Calculus and Database Updates
	The Structure of SSAs
	SSAs for Views?
	Generating SSAs for Views
	View Definitions as Integrity Constraints
	View Maintenance Supported by SSAs
	An Example from Relational Algebra

	Checking and Proving Integrity Constraints
	The Case of Functional Dependencies

	Embedding Integrity Constraints
	Conclusions, Related Issues, and Outlook
	Sketch of Proofs

