
Online Appendix to A Normal Form for
XML Documents

MARCELO ARENAS and LEONID LIBKIN
University of Toronto, Toronto, Ontario, Canada

A. PROOF OF SECTION 7

A DTD D can be inconsistent in the sense that there is no XML tree T such
that T |= D. For example, a recursive DTD containing a rule P (a) = a is not
consistent; there is no a finite XML tree satisfying this rule. In this section we
only consider consistent DTDs, since the implication problem for inconsistent
DTDs is trivial and it can be checked in linear time whether a DTD is consistent
[Fan and Libkin 2001].

A.1 Proof of Theorem 7.1

To prove this theorem we start by introducing some terminology. Given a simple
DTD D = (E, A, P, R, r) and p, p′ ∈ paths(D) such that p is a proper prefix
of p′, we say that p′ can be nullified from p if p′ is of the form p.w1.wn,
where wi ∈ E ∪ A ∪ {S} (i ∈ [1, n]) and either (1) P (last(p)) contains w1? or w∗1;
or (2) there is i ∈ [1, n− 1] such that P (wi) contains wi+1? or w∗i+1. Intuitively,
p′ can be nullified from p if there exists and XML tree T conforming to D and
a tree tuple t in T such that t.p 6= ⊥ and t.p′ = ⊥. For example, if P (r) = a,
P (a) = b∗ and P (b) = c, then r.a.b.c can be nullified from r and r.a, but it cannot
be nullified from r.a.b. Given S ⊆ paths(D), we say that p′ can be nullified from
S if p′ can be nullified from p, where p is the longest common prefix of p′ and
a path from S.

The following is proved by the same argument as Lemma A.6 shown in elec-
tronic Appendix A.3.

The authors were supported in part by grants from the Natural Sciences and Engineering Research
Council of Canada and from Bell University Laboratories.
Authors’ addresses: M. Arenas, Department of Computer Science, University of Toronto, 10 King’s
College Road, Toronto, Ontario, Canada M5S 3G4; email: marenas@cs.toronto.edu; L. Libkin, De-
partment of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario,
Canada M5S 3H5; email: libkin@cs.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0362-5915/04/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004, Pages 1–7.

2 • M. Arenas and L. Libkin

LEMMA A.1. Given a simple DTD D, a set 6 of functional dependencies over
D and S∪{p} ⊆ paths(D), (D,6) 6` S→ p if and only if there is an XML tree T
and a path q prefix of p such that T |= (D,6), tuplesD(T) = {t1, t2}, t1.S = t2.S,
t1.S 6= ⊥, t1.p 6= t2.p, t1.p 6= ⊥, t2.p 6= ⊥, t1.q 6= t2.q and

—For each s ∈ paths(D), if s can be nullified from S ∪ {p}, then t1.s = t2.s = ⊥.
—For each s ∈ paths(D), if q is not a prefix of s and s cannot be nullified from

S ∪ {p}, then t1.s = t2.s and t1.s 6= ⊥.

To prove that the implication problem for simple DTDs can be solved in poly-
nomial time, we use the technique of [Sagiv et al. 1981] and code constraints
with propositional formulas. That is, for each simple DTD D and set of func-
tional dependencies 6 ∪ {S → p} over D, we will define a propositional for-
mula ϕ such that (D,6) 6` S → p if and only if ϕ is satisfiable. This formula
will be of the form ϕ1 ∨ · · · ∨ ϕn, where each ϕi (i ∈ [1, n]) is a conjunction
of Horn clauses. Given that the consistency problem for Horn clauses is solv-
able in linear time, we will conclude that our problem is solvable in quadratic
time.

Let D be a DTD, 6 a set of functional dependencies over D and S ∪ {p} ⊆
paths(D). Recall that we assumed that each constraints in6 is of the form S′ →
p′, where S′ ∪ {p′} ⊆ paths(D). We define paths(6) as {s | there is S′ → p′ ∈ 6
such that s ∈ S′ ∪{p′}}. To define the propositional formula ϕ we view each path
s ∈ paths(6) ∪ S ∪ {p} as a propositional variable. Furthermore, for each path
q which is a prefix of p we define a propositional formula ϕq as

¬p∧
(∧

s∈Pq∪S

s

)
∧
(∧

s∈Nq

¬s

)
∧
∧
ψ∈0

ψ,

where Pq , Nq and 0 are set of propositional variables and formulas defined as
follows.

—For each s ∈ paths(6) such that s cannot be nullified from S ∪ {p} and q is
not a prefix of s, s is included in Pq .

—For each s ∈ paths(6) such that s ∈ EPaths(D), s cannot be nullified from S
∪ {p} and q is a prefix of s, s is included in Nq .

—For each S′ → p′ ∈ 6, if there is no q′ ∈ S′ ∪ {p′} such that q′ can be nullified
from S ∪ {p}, then (

∧
s∈S′ s)→ p′ is included in 0

We note that ϕq is a conjunction of Horn clauses.
The propositional formula ϕ is defined as the disjunction of some of the for-

mula ϕqs. The following lemma shows that in this disjunction we only need to
consider qs such that q = q′.τ , for some τ ∈ E, and P (last(q′)) contains τ ∗ or τ+.

LEMMA A.2. Let D = (E, A, P, R, r) be a simple DTD, 6 a set of functional
dependencies over D and S ∪ {p, q} ⊆ paths(D) such that q is a prefix of p. If
there is τ ∈ E such that q = q′.τ and P (last(q′)) contains τ ∗ or τ+, then ϕq is
satisfiable iff there is an XML tree T such that T |= (D,6), tuplesD(T) = {t1, t2},
t1.S = t2.S, t1.S 6= ⊥, t1.p 6= t2.p, t1.p 6= ⊥, t2.p 6= ⊥, t1.q 6= t2.q and

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

A Normal Form for XML Documents • 3

—For each s ∈ paths(D), if s can be nullified from S ∪ {p}, then t1.s = t2.s = ⊥.
—For each s ∈ paths(D), if q is not a prefix of s and s cannot be nullified from

S ∪ {p}, then t1.s = t2.s and t1.s 6= ⊥.

PROOF. (⇒) Let σ be a truth assignment satisfying ϕq . We define tuples t1
and t2 as follows. For each s ∈ paths(D), if s can be nullified from S ∪ {p}, then
t1.s = t2.s = ⊥. If s cannot be nullified from S ∪ {p} we consider two cases. If
q is not a prefix of s, then t1.s = t2.s and t1.s 6= ⊥. Otherwise, if σ (s) = 1, then
t1.s = t2.s and t1.s 6= ⊥, else t1.s 6= t2.s, t1.s 6= ⊥ and t2.s 6= ⊥.

It is straightforward to prove that there is an XML tree T ∈ treesD({t1, t2})
such that T |= D and tuplesD(T) = {t1, t2}. Given that σ |= ¬p ∧ ∧s∈S s,
t1.S = t2.S, t1.S 6= ⊥, t1.p 6= t2.p, t1.p 6= ⊥ and t2.p 6= ⊥. Besides, t1.q 6= t2.q,
since q ∈ Nq and σ |= ∧

s∈Nq
¬s. Thus, to finish the proof we have to show

that T |= 6. Let S′ → p′ ∈ 6. If there is q′ ∈ S′ ∪ {p′} such that q′ can be
nullified from S ∪ {p}, then T trivially satisfies S′ → p′ since t1.q′ = t2.q′ = ⊥.
Otherwise, suppose that t1.S′ = t2.S′ and t1.S′ 6= ⊥. Then, by considering that
σ |=∧s∈Pq

s and the definition of t1 and t2, we conclude that σ |=∧s∈S′ s. Thus,
given that σ |= (

∧
s∈S′ s) → p′, we conclude that σ (p′) = 1, and, therefore,

t1.p′ = t2.p′.

(⇐) Suppose that there is an XML tree T satisfying the conditions of the
lemma. Define a truth assignment σ as follows. For each s ∈ paths(6)∪S∪{p},
if t1.s 6= t2.s then σ (s) = 0. Otherwise, σ (s) = 1.

Given that t1.p 6= t2.p and t1.S = t2.S, σ (¬p) = 1 and σ |=∧s∈S s. Let s ∈ Pq .
By definition, s cannot be nullified from S ∪ {p} and q is not a prefix of s,
and, therefore, t1.s = t2.s. Thus, σ (s) = 1. We conclude that σ |= ∧

s∈Pq
s. Let

s ∈ Nq . By definition, s cannot be nullified from S ∪ {p}, q is a prefix of s and
s ∈ EPaths(D). Hence, t1.s 6= t2.s and σ (s) = 0. We conclude that σ |=∧s∈Nq

¬s.
Finally, let (

∧
s∈S′ s)→ p′ ∈ 6q . If σ |=∧s∈S′ s, then by definition of σ and6q , we

conclude that t1.S′ = t2.S′ and t1.S′ 6= ⊥. Thus, given that T |= 6, we conclude
that t1.p′ = t2.p′ and, therefore, σ (p′) = 1.

Combining Lemmas A.1 and A.2 we obtain:

LEMMA A.3. Let D = (E, A, P, R, r) be a simple DTD, 6 a set of functional
dependencies over D and S ∪ {p} ⊆ paths(D). Assume that X = {q ∈ paths(D) |
q is a prefix of p and there is τ ∈ E such that q = q′.τ and P (last(q′)) contains
τ ∗ or τ+}. Then, (D,6) 6` S→ p iff ϕ =∨q∈X ϕq is satisfiable.

Finally, we are ready to show that for a simple DTD D and a set of FDs6∪{S→
p} over D, checking whether (D,6) ` S → p can be done in quadratic time.
The size of each formula ϕq in the previous Lemma is O(‖6‖ + ‖S‖ + ‖p‖).
Thus, it is possible to verify whether ϕq is satisfiable in time O(‖6‖ + ‖S‖ +
‖p‖), since satisfiability of propositional Horn formulas can be checked in linear
time [Dowling and Gallier 1984]. Hence, given that there are at most ‖p‖ of
these formulas, checking whether formula

∨
q∈X ϕq in Lemma A.3 is satisfiable

requires time O(‖p‖ · (‖6‖ + ‖S‖ + ‖p‖)). To construct this formula, first we

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

4 • M. Arenas and L. Libkin

execute two steps:

(1) For every s ∈ paths(6), find the longest common prefix of s and a path from
S∪{p}, which requires time O(‖s‖ · (‖S‖+‖p‖)). By using this prefix verify
whether s can be nullified from S ∪ {p}, which requires time O(‖s‖ · ‖D‖).

(2) For each s ∈ paths(6) and for each prefix q of p, verify whether q is a prefix
of s, which requires time O(‖q‖).

The total time required by these steps is O(‖6‖ · (‖D‖ + ‖S‖ + ‖p‖)). Let k be
the number of paths in 6 and l be the number of prefixes of p. The information
generated by the first step is stored in a array with k entries, one for each
path in 6, indicating whether each of these paths can be nullified from S ∪ {p}.
Similarly, the information generated by the second step is stored in l arrays
with k entries each. By using these data structures, the formula

∨
q∈X ϕq in

Lemma A.3 can be constructed in time O(‖p‖ · (‖6‖ + ‖S‖ + ‖p‖)). Thus, the
total time of the algorithm is O(‖p‖·(‖6‖+‖S‖+‖p‖)+‖6‖·(‖D‖+‖S‖+‖p‖)).
This completes the proof of Theorem 7.1.

A.2 Proof of Theorem 7.2

To prove this theorem first we prove two lemmas. Let D = (E, A, P, R, r) be
a disjunctive DTD and τ ∈ E such that P (τ) = s1, . . . , sn. Assume that for a
fixed k ∈ [1, n], sk = s′1|s′2, where s′1, s′2 are simple disjunctions over alphabets
A′1, A′2 and A′1 ∩ A′2 = ∅. Assume that there is only one pτ ∈ paths(D) such that
last(pτ) = τ . We define pathsi(D) (for i = 1, 2) as the set of all paths q in D
such that one of the following statement holds: (1) pτ is not a proper prefix of q
or (2) there is τ ′ ∈ E such that pτ .τ ′ is a prefix of q and τ ′ is in the alphabet of
any of the regular expressions s1, . . . , sk−1, s′i, sk+1, . . . , sn. Then we define DTDs
Di = (Ei, Ai, Pi, Ri, r) (for i = 1, 2) as follows. Ei = {τ ′ ∈ E | τ ′ is mentioned
in some q ∈ pathsi(D)}, Ai = {@l | there is τ ′ ∈ Ei such that @l ∈ R(τ ′)},
Pi(τ) = s1, . . . , sk−1, s′i, sk+1, . . . , sn, Pi(τ ′) = P (τ ′), for each τ ′ ∈ Ei − {τ }, and
Ri = R|Ei . Moreover, given a set of functional dependencies 6 over D, we
define a set of functional dependencies 6i over Di (for i = 1, 2) as follows. For
each S→ p ∈ 6, if S ∪ {p} ⊆ pathsi(D), then S→ p is included in 6i.

LEMMA A.4. Let D,6, τ , pτ , Di and6i , for i = 1, 2 be as above and let S→ p
be a functional dependency over D. Then

(a) If S ∪ {p} 6⊆ pathsi(D) for every i ∈ [1, 2], then (D,6) ` S→ p.
(b) If S ∪ {p} ⊆ paths1(D) and S ∪ {p} 6⊆ paths2(D), then (D,6) ` S → p iff

(D1,61) ` S→ p.
(c) If S ∪ {p} ⊆ pathsi(D) for every i ∈ [1, 2], then (D,6) ` S → p iff for every

i ∈ [1, 2], (Di,6i) ` S→ p.

PROOF. (a) Let pi ∈ pathsi(D) (i ∈ [1, 2]) such that pi ∈ S ∪ {p}, for every
i ∈ [1, 2], p1 6∈ paths2(D) and p2 6∈ paths1(D). Let T be an XML tree such that
T |= (D,6), and t1, t2 ∈ tuplesD(T). Without loss of generality, assume that
p1 ∈ S. If t1.p1 = t2.p1 and t1.p1 6= ⊥, then t1.p2 = t2.p2 = ⊥, and, therefore,
T |= S→ p. Thus, we conclude that (D,6) ` S→ p.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

A Normal Form for XML Documents • 5

(b) If (D,6) ` S → p, we have to prove that (D1,61) ` S → p. Let T1 be an
XML such that T1 |= (D1,61). This tree conforms to D and satisfies 6, since
each constraint ϕ ∈ 6 − 61 contains at least one path q such that for every
t ∈ tuplesD(T1), t.q = ⊥. Hence, T1 |= S→ p.

Suppose that (D1,61) ` S → p. We have to prove that (D,6) ` S → p.
Let T be an XML tree such that T |= (D,6), and t1, t2 ∈ tuplesD(T). Let p1 ∈
paths1(D) such that p1 ∈ S∪{p} and p1 6∈ paths2(D). By contradiction, suppose
that t1.S = t2.S, t1.S 6= ⊥ and t1.p 6= t2.p. If p1 ∈ S, then there is T1 ∈
treesD({t1, t2}) such that T1 |= D1, since t1.p1 6= ⊥ and t2.p1 6= ⊥. Since T |= 6,
T1 |= 61, and, therefore (D1,61) 6` S → p, a contradiction. If p1 = p, without
loss of generality, we can assume that t1.p1 6= ⊥. If t2.p1 6= ⊥, then there is
T1 ∈ treesD({t1, t2}) such that T1 |= D1. But, T1 |= 61, since T |= 6, and,
therefore (D1,61) 6` S → p, a contradiction. Assume that t2.p1 = ⊥. Define
t ′2 ∈ T (D1) as follows. For each w ∈ paths1(D) ∩ paths2(D), t ′2.w = t2.w, and
for each w ∈ paths1(D) − paths2(D), if t1.w = ⊥, then t ′2.w = ⊥, otherwise
t ′2.w 6= t1.w. Given that t1.pτ 6= t2.pτ , since t1.p1 6= ⊥ and t2.p1 = ⊥, we conclude
that there is an XML tree T1 ∈ treesD({t1, t ′2}) such that T1 conforms to D1.
But T1 |= 61, since treesD({t1, t2}) |= 6. Thus, (D1,61) 6` S → p, again a
contradiction.
(c) We will only prove the “if” direction. The “only if” direction is analogous to
the proof of this direction in (b). Assume that (D,6) 6` S → p. We will show
that (D1,61) 6` S→ p or (D2,62) 6` S→ p.

Given that every disjunctive DTD is a relational DTD (see Proposition 7.3),
by Lemma A.6 we conclude that (D,6) 6` S→ p if and only if there is an XML
tree T and a path q prefix of p such that T |= (D,6), tuplesD(T) = {t1, t2},
t1.S = t2.S, t1.S 6= ⊥, t1.p 6= t2.p, t1.q 6= t2.q and for each s ∈ paths(D), if q is
not a prefix of s, then t1.s = t2.s. We consider three cases.

(1) If q is not a prefix of pτ . Then, there is T ′ ∈ treesD({t1, t2}) such that T ′

conforms to either D1 or D2. Without loss of generality, assume that T ′ |=
D1. In this case, T ′ |= 61, since T |= 6. Hence, (D1,61) 6` S→ p.

(2) If q is a prefix of pτ and there exists a′1 ∈ A′1 and a′2 ∈ A′2 such that t1.pτ .a′1 6=⊥ and t2.pτ .a′2 6= ⊥. In this case, we define t ′2 ∈ T (D1) as follows. For each
w ∈ paths1(D) ∩ paths2(D), t ′2.w = t2.w, and for each w ∈ paths1(D) −
paths2(D), if t1.w = ⊥, then t ′2.w = ⊥, otherwise t ′2.w 6= t1.w. Then, there
exists T ′ ∈ treesD1 ({t1, t ′2}) such that T ′ |= D1, T ′ |= 61 and T ′ 6|= S → p,
since T |= 6 and T 6|= S→ p. We conclude that (D1,61) 6` S→ p.

(3) If q is a prefix of pτ and there are no a′1 ∈ A′1 and a′2 ∈ A′2 such that either
t1.pτ .a′1 6= ⊥ and t2.pτ .a′2 6= ⊥ or t2.pτ .a′1 6= ⊥ and t1.pτ .a′2 6= ⊥. This case is
analogous to the first one.

Given a disjunctive DTD D = (E, A, P, R, r), to apply the previous lemma we
need to find an element type τ such that there is exactly one path in D whose
last element is τ and P (τ) = s1, . . . , sk , . . . , sn, where sk = s′1|s′2, s′1 and s′2 are
simple disjunctions over alphabets A′1, A′2 and A′1 ∩ A′2 = ∅. If there is no such
an element type and D is not a simple DTD, it is possible to create it by using
the following transformation. Pick τ satisfying the previous conditions except

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

6 • M. Arenas and L. Libkin

for there is more than one path whose last element is τ . Pick p ∈ paths(D) such
that last(p) = τ . Define a DTD Dp = (Ep, A, Pp, Rp, rp) as follows. rp = [r]
and Ep = (E − {r}) ∪ {[q] | q ∈ paths(D) and q is a prefix of p} (we use square
brackets to distinguish between paths and element types). The functions Pp
and Rp are defined as follows.

—For each q ∈ paths(D) and τ ′ ∈ E such that q.τ ′ is a prefix of p, Pp([q]) =
f (P (last(q))), where f is a homomorphism defined as f (τ ′) = [q.τ ′] and
f (τ ′′) = τ ′′ for each τ ′′ 6= τ ′. Moreover, Pp([p]) = P (last(p)) and Pp(τ ′) = P (τ ′),
for each τ ′ ∈ E − {r}.

—For each [q] ∈ Ep, Rp([q]) = R(last(q)). Moreover, Rp(τ ′) = R(τ ′), for each
τ ′ ∈ E − {r}.

Let 6 ∪ {S → q} be a set of functional dependencies over D. We define a set
of functional dependencies 6p ∪ {Sp → qp} over Dp as follows. For each path
q′ mentioned in 6 ∪ {S → q}, if q′ = q1.q2, where q1 is the longest common
prefix of q′ and p, then q′ is replaced by g (q1).q2, where g is an homomorphism
defined as g ([r]) = [r] and g ([w.τ ′]) = g ([w]).[w.τ ′], for each w.τ ′ prefix of p.
The following is straightforward.

LEMMA A.5. Let D, 6 ∪ {S→ q}, Dp and 6p ∪ {Sp→ qp} be as above. Then,
(D,6) ` S→ q iff (Dp,6p) ` Sp→ qp.

Theorem 7.2 now follows from Lemmas A.4 and A.5.

A.3 The Implication Problem for Relational DTDs is in coNP

To prove this theorem we start with the following lemma.

LEMMA A.6. Given a relational DTD D, a set 6 of functional dependencies
over D and S ∪ {p} ⊆ paths(D), (D,6) 6` S → p if and only if there is an
XML tree T and a path q prefix of p such that T conforms to D, T satisfies 6,
tuplesD(T) = {t1, t2}, t1.S = t2.S, t1.S 6= ⊥, t1.p 6= t2.p, t1.q 6= t2.q and for each
s ∈ paths(D), if q is not a prefix of s, then t1.s = t2.s.

PROOF. We will prove only the “only if” direction, since the “if” direction is
trivial.

Suppose that (D,6) 6` S→ p. There is an XML tree T ′ conforming to D and
satisfying 6 such that T ′ 6|= S → p. Then, there are tuples t ′1, t ′2 ∈ tuplesD(T)
such that t ′1.S = t ′2.S, t ′1.S 6= ⊥ and t ′1.p 6= t ′2.p. Let q be the shortest prefix
of p such that t ′1.q 6= t ′2.q. We define tree tuples t1 and t2 as follows. For each
s ∈ paths(D), if q is not a prefix of s, then t1.s = t ′1.s and t2.s = t ′1.s. Otherwise,
t1.s = t ′1.s and t2.s = t ′2.s. Notice that t1, t2 ∈ tuplesD(T ′).

Given that D is a relational DTD, it is possible to find T ∈ treesD({t1, t2}) such
that T |= D. We need to prove that T satisfies the conditions of the lemma. By
definition of t1 and t2, tuplesD(T) = {t1, t2} and for each s ∈ paths(D), if q is not
a prefix of s, then t1.s = t2.s. Besides, t1.S = t2.S, t1.S 6= ⊥ and t1.p 6= t2.p, since
t ′1.S = t ′2.S, t ′1.S 6= ⊥, t ′1.p 6= t ′2.p and q is a prefix of p. Finally, t1.q 6= t2.q, since
t ′1.q 6= t ′2.q, and T |= 6, since T ′ |= 6 and t1, t2 ∈ tuplesD(T ′).

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

A Normal Form for XML Documents • 7

Now we are ready to prove that the implication problem for relational DTDs
is in coNP. Let D be a relational DTD, 6 a set of functional dependencies
over D and S ∪ {p} ⊆ paths(D). Let prefix(6 ∪ {S → p}) be the set of all
p′ ∈ paths(D) such that p′ is a prefix of a path mentioned in 6 ∪ {S → p}.
Notice that ‖prefix(6 ∪ {S→ p})‖ is O(‖6 ∪ {S→ p}‖2).

To check whether (D,6) 6` S→ p, we use a nondeterministic algorithm that
guesses the tuples t1 and t2 mentioned in Lemma A.6. This algorithm does not
construct all the values in t1 and t2, it guesses only the values of these tuples
that are necessary to verify whether treesD({t1, t2}) |= 6. The algorithm works
as follows. For each s ∈ prefix(6 ∪ {S → p}), guess the values of t1.s and t2.s.
Verify whether it is possible to construct an XML tree conforming to D and
containing t1 and t2. If this does not hold, then return “no”. Otherwise, guess a
prefix q of p. Verify whether t1.S = t2.S, t1.S 6= ⊥, t1.p 6= t2.p, t1.q 6= t2.q and
for each s ∈ paths(6 ∪ {S → p}), if q is not a prefix of s, then t1.s = t2.s. If this
does not hold, then return “no”. Otherwise, check whether the values in t1 and
t2 satisfy 6. If this is the case, then return “yes”, otherwise return “no”.

The previous algorithm works in nondeterministic polynomial time, since
‖prefix(6 ∪ {S → p})‖ is O(‖6 ∪ {S → p}‖2). Therefore, we conclude that the
implication problem for relational DTDs is in coNP.

A.4 Proof of Proposition 7.7

We only need to prove the “if” direction. Suppose that for each nontrivial FD of
the form S→ p.@l or S→ p.S in 6, S→ p ∈ (D,6)+.

Assume that (D,6) is not in XNF. Without loss of generality, assume that
there exists a nontrivial functional dependency S′ → p′.@l ′ such that S′ →
p′.@l ′ ∈ (D,6)+ and S′ → p′ 6∈ (D,6)+. By Lemma A.6, there is an XML
tree T and a path q prefix of p′ such that T conforms to D, T satisfies 6,
tuplesD(T) = {t1, t2}, t1.S′ = t2.S′, t1.S′ 6= ⊥, t1.p′ 6= t2.p′, t1.q 6= t2.q and
for each s ∈ paths(D), if q is not a prefix of s, then t1.s = t2.s. If t1.p′.@l ′ 6=
t2.p′.@l ′, then (D,6) 6` S′ → p′.@l ′, a contradiction. Thus, we can assume
that t1.p′.@l ′ = t2.p′.@l ′. We can also assume t1.p′.@l ′ 6= ⊥, since if t1.p′.@l ′ =
t2.p′.@l ′ = ⊥, then t1.p′ = t2.p′ = ⊥ and, therefore, T |= S′ → p′. Define a new
tree tuple t ′1 as follows: t ′1.w = t1.w, for each w 6= p′.@l ′, t ′1.p

′.@l ′ 6= t1.p′.@l ′

and t ′1.p
′.@l ′ 6= ⊥. Then, there is an XML tree T ′ ∈ treesD({t ′1, t2}) such that

T ′ |= D and T ′ 6|= S′ → p′.@l ′, since p′.@l ′ 6∈ S′ (S′ → p′.@l ′ is a nontrivial
functional dependency). If T ′ |= 6, then (D,6) 6` S′ → p′.@l ′, a contradiction.
Hence T ′ 6|= 6 and, therefore, there is S → p′′ ∈ 6 such that T ′ 6|= S → p′′.
But p′′ must be equal to p′.@l ′, since t1, t2 ∈ tuplesD(T) and T |= 6. Therefore,
T 6|= S → p′, because t1.S = t ′1.S = t2.S, t ′1.S 6= ⊥ and t1.p′ 6= t2.p′. We
conclude that (D,6) 6` S → p′, which contradicts our initial assumption since
S→ p′.@l ′ is a nontrivial FD in 6.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

