
Foundations of RDF Databases

Marcelo Arenas1, Claudio Gutierrez2 and Jorge P�erez1

1 Ponti�cia Universidad Cat�olica de Chile
2 Universidad de Chile

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 1 / 108

Semantic Web

\The Semantic Web is an extension of the current web in which
information is given well-de�ned meaning, better enabling
computers and people to work in cooperation."

[Tim Berners-Lee et al. 2001.]

Speci�c Goals:

I Build a description language with standard semantics
I Make semantics machine-processable and understandable
I Incorporate logical infrastructure to reason about resources
I W3C Proposal:Resource Description Framework (RDF)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 2 / 108

RDF in a nutshell

I RDF is the W3C proposal framework for representing
information in the Web

I Abstract syntax based on directed labeled graph

I Schema de�nition language (RDFS): De�ne new vocabulary
(typing, inheritance of classes and properties)

I Extensible URI-based vocabulary

I Formal semantics

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 3 / 108

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 4 / 108

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s; p; o) 2 (U [B) � U � (U [B [L) is called anRDF triple

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 4 / 108

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s; p; o) 2 (U [B) � U � (U [B [L) is called anRDF triple

A set of RDF triples is called anRDF graph

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 4 / 108

RDF formal model

Proviso
In this talk, we do distinguish between URIs and literals.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 5 / 108

RDF formal model

Proviso
In this talk, we do distinguish between URIs and literals.

I (s; p; o) 2 (U [B) � U � (U [B) is called an RDF triple.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 5 / 108

RDF formal model

Proviso
In this talk, we do distinguish between URIs and literals.

I (s; p; o) 2 (U [B) � U � (U [B) is called an RDF triple.

I The inclusion ofL does not change any of the results
presented in this talk.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 5 / 108

RDF: An example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address lives in

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 6 / 108

Why is RDF interesting from a database point of view?

Some new challenges:
I Existential variables as datavalues (null values)
I Built-in vocabulary with �xed semantics (RDFS)
I Graph model where nodes may also be edge labels

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 7 / 108

Why is RDF interesting from a database point of view?

Some new challenges:
I Existential variables as datavalues (null values)
I Built-in vocabulary with �xed semantics (RDFS)
I Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF pointof
view?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 7 / 108

Why is RDF interesting from a database point of view?

Some new challenges:
I Existential variables as datavalues (null values)
I Built-in vocabulary with �xed semantics (RDFS)
I Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF pointof
view?

I RDF data processing can take advantage of database
techniques: Query processing, storing, indexing,: : :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 7 / 108

Previous example: A better representation

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 8 / 108

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 8 / 108

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 8 / 108

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 8 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

I Syntax and formal semantics

I Complexity of the evaluation problem

I Optimization methods

I Expressiveness

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 9 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

I Syntax and formal semantics

I Complexity of the evaluation problem

I Optimization methods

I Expressiveness

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 10 / 108

Querying RDF: SPARQL

I SPARQL is the W3C recommendation query language for
RDF (January 2008).

I SPARQL is a recursive acronym that stands forSPARQL
Protocol and RDF Query Language.

I SPARQL is a graph-matching query language.

I A SPARQL query consists of three parts:
I Pattern matching: optional, union, nesting, �ltering.
I Solution modi�ers: projection, distinct, order, limit, o�set.
I Output part: construction of new triples,: : :.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 11 / 108

SPARQL in a nutshell

SELECT ?Name?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

SPARQL in a nutshell

SELECT ?Name?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

SPARQL in a nutshell

SELECT ?Name?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H

I Head: processing of some variables.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H P

I Head: processing of some variables.
I Body: pattern matching expression.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

SPARQL in a nutshell

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H P

I Head: processing of some variables.
I Body: pattern matching expression.

We focus onP.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 12 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ P1
P2 }

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2 }

{ P3
P4 }

}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL{ P5 } }

{ P3
P4
OPTIONAL{ P7 } }

}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL { P5 } }

{ P3
P4
OPTIONAL{ P7

OPTIONAL{ P8 } } }
}

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL { P5 } }

{ P3
P4
OPTIONAL { P7

OPTIONAL { P8 } } }
}
UNION
{ P9 }

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 13 / 108

But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL { P5 } }

{ P3
P4
OPTIONAL { P7

OPTIONAL { P8 } } }
}
UNION
{ P9

FILTER (R) }

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 13 / 108

A formal study of SPARQL

Why is this needed?

I Clarifying corner cases

I Eliminating ambiguities

I Helping in the implementation process
I Understanding the resources (time/space) needed to

implement SPARQL

I Understanding what can/cannot be expressed
I Discovering what needs to be added (aggregation, navigational

capabilities, recursion,: : :)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 14 / 108

A standard algebraic syntax

I Triple patterns: just triples + variables,without blanks

?X :name "john" (?X ; name, john)

I Graph patterns: full parenthesized algebra

{ P1 P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

original SPARQL syntax algebraic syntax

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 15 / 108

A standard algebraic syntax

I Explicit precedence/association

Example
{ t1

t2
OPTIONAL { t3 }
OPTIONAL { t4 }
t5

}

((((t1 AND t2) OPT t3) OPT t4) AND t5)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 16 / 108

Mappings: building block for the semantics

De�nition
A mapping is a partial function from variables to RDF terms.

� : Variables �! U

The evaluation of a pattern results in a set of mappings.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 17 / 108

Mappings: building block for the semantics

De�nition
A mapping is a partial function from variables to RDF terms.

� : Variables �! U

The evaluation of a pattern results in a set of mappings.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 17 / 108

The semantics of triple patterns

Given an RDF graphG and a triple patternt .

De�nition
The evaluation oft over G is the set of mappings� that:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 18 / 108

The semantics of triple patterns

Given an RDF graphG and a triple patternt .

De�nition
The evaluation oft over G is the set of mappings� that:

I has as domain the variables int : dom(�) = var(t)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 18 / 108

The semantics of triple patterns

Given an RDF graphG and a triple patternt .

De�nition
The evaluation oft over G is the set of mappings� that:

I has as domain the variables int : dom(�) = var(t)
I makest to match the graph:� (t) 2 G

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 18 / 108

The semantics of triple patterns

Given an RDF graphG and a triple patternt .

De�nition
The evaluation oft over G is the set of mappings� that:

I has as domain the variables int : dom(�) = var(t)
I makest to match the graph:� (t) 2 G

Example

graph triple evaluation
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

(?X ; name, ?Y)
?X ?Y

� 1: R1 john
� 2: R2 paul

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 18 / 108

The semantics of triple patterns

Given an RDF graphG and a triple patternt .

De�nition
The evaluation oft over G is the set of mappings� that:

I has as domain the variables int : dom(�) = var(t)
I makest to match the graph:� (t) 2 G

Example

graph triple evaluation
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

(?X ; name,?Y)
?X ?Y

� 1: R1 john
� 2: R2 paul

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 18 / 108

The semantics of triple patterns

Given an RDF graphG and a triple patternt .

De�nition
The evaluation oft over G is the set of mappings� that:

I has as domain the variables int : dom(�) = var(t)
I makest to match the graph:� (t) 2 G

Example

graph triple evaluation
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

(?X ; name,?Y)
?X ?Y

� 1: R1 john
� 2: R2 paul

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 18 / 108

Compatible mappings

De�nition
Mappings� 1 and � 2 are compatible if they agree in their common
variables:

If ?X 2 dom(� 1) \ dom(� 2), then � 1(?X) = � 2(?X).

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 19 / 108

Compatible mappings

De�nition
Mappings� 1 and � 2 are compatible if they agree in their common
variables:

If ?X 2 dom(� 1) \ dom(� 2), then � 1(?X) = � 2(?X).

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 19 / 108

Compatible mappings

De�nition
Mappings� 1 and � 2 are compatible if they agree in their common
variables:

If ?X 2 dom(� 1) \ dom(� 2), then � 1(?X) = � 2(?X).

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [� 2 : R1 john J@edu.ex

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 19 / 108

Compatible mappings

De�nition
Mappings� 1 and � 2 are compatible if they agree in their common
variables:

If ?X 2 dom(� 1) \ dom(� 2), then � 1(?X) = � 2(?X).

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [� 2 : R1 john J@edu.ex

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 19 / 108

Compatible mappings

De�nition
Mappings� 1 and � 2 are compatible if they agree in their common
variables:

If ?X 2 dom(� 1) \ dom(� 2), then � 1(?X) = � 2(?X).

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [� 2 : R1 john J@edu.ex
� 1 [� 3 : R1 john P@edu.ex R2

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 19 / 108

Compatible mappings

De�nition
Mappings� 1 and � 2 are compatible if they agree in their common
variables:

If ?X 2 dom(� 1) \ dom(� 2), then � 1(?X) = � 2(?X).

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [� 2 : R1 john J@edu.ex
� 1 [� 3 : R1 john P@edu.ex R2

I � 2 and � 3 are not compatible

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 19 / 108

Sets of mappings and operations

Let
 1 and
 2 be sets of mappings.

De�nition

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 20 / 108

Sets of mappings and operations

Let
 1 and
 2 be sets of mappings.

De�nition
Join: extends mappings in
1 with compatible mappings in
2

I
 1
 2 = f � 1 [� 2 j � 1 2
 1, � 2 2
 2 and � 1, � 2 are
compatibleg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 20 / 108

Sets of mappings and operations

Let
 1 and
 2 be sets of mappings.

De�nition
Join: extends mappings in
1 with compatible mappings in
2

I
 1
 2 = f � 1 [� 2 j � 1 2
 1, � 2 2
 2 and � 1, � 2 are
compatibleg

Di�erence: selects mappings in
1 that cannot be extended with
mappings in
2

I
 1 r
 2 = f � 1 2
 1 j there is no mapping in
2 compatible
with � 1g

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 20 / 108

Sets of mappings and operations

De�nition

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 21 / 108

Sets of mappings and operations

De�nition
Union: includes mappings in
1 and in
 2

I
 1 [
 2 = f � j � 2
 1 or � 2
 2g

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 21 / 108

Sets of mappings and operations

De�nition
Union: includes mappings in
1 and in
 2

I
 1 [
 2 = f � j � 2
 1 or � 2
 2g

Left Outer Join: extends mappings in
1 with compatible
mappings in
2 if possible

I
 1
 2 = (
 1
 2) [(
 1 r
 2)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 21 / 108

Semantics of SPARQL

Given an RDF graphG.

De�nition

Jt KG =

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 22 / 108

Semantics of SPARQL

Given an RDF graphG.

De�nition

Jt KG = f � j dom(�) = var(t) and � (t) 2 Gg

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 22 / 108

Semantics of SPARQL

Given an RDF graphG.

De�nition

Jt KG = f � j dom(�) = var(t) and � (t) 2 Gg

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG =

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 22 / 108

Semantics of SPARQL

Given an RDF graphG.

De�nition

Jt KG = f � j dom(�) = var(t) and � (t) 2 Gg

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG [JP2KG

JP1 OPT P2KG =

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 22 / 108

Semantics of SPARQL

Given an RDF graphG.

De�nition

Jt KG = f � j dom(�) = var(t) and � (t) 2 Gg

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG [JP2KG

JP1 OPT P2KG = JP1KG JP2KG

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 22 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

I from the Join

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

I from the Di�erence

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Semantics of SPARQL: An example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

((?X ; name, ?Y) OPT (?X; email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

I from the Union

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 23 / 108

Filter expressions (value constraints)

Filter expression:P FILTER R
I P is a graph pattern
I R is a built-in condition

We consider inR:
I equality = among variables and RDF terms
I unary predicatebound
I boolean combinations (̂, _ , :)

We impose a safety condition: var(R) � var(P)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 24 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;
I R is ?X =?Y , ?X ; ?Y 2 dom(�) and � (?X) = � (?Y);

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;
I R is ?X =?Y , ?X ; ?Y 2 dom(�) and � (?X) = � (?Y);
I R is bound(?X) and ?X 2 dom(�);

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;
I R is ?X =?Y , ?X ; ?Y 2 dom(�) and � (?X) = � (?Y);
I R is bound(?X) and ?X 2 dom(�);
I R is : R1 and � 6j= R1;

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;
I R is ?X =?Y , ?X ; ?Y 2 dom(�) and � (?X) = � (?Y);
I R is bound(?X) and ?X 2 dom(�);
I R is : R1 and � 6j= R1;
I R is R1 _ R2, and � j= R1 or � j= R2;

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;
I R is ?X =?Y , ?X ; ?Y 2 dom(�) and � (?X) = � (?Y);
I R is bound(?X) and ?X 2 dom(�);
I R is : R1 and � 6j= R1;
I R is R1 _ R2, and � j= R1 or � j= R2;
I R is R1 ^ R2, � j= R1 and � j= R2.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

Satisfaction of value constraints

A mapping� satis�es a conditionR (� j= R) if:

I R is ?X = c, ?X 2 dom(�) and � (?X) = c;
I R is ?X =?Y , ?X ; ?Y 2 dom(�) and � (?X) = � (?Y);
I R is bound(?X) and ?X 2 dom(�);
I R is : R1 and � 6j= R1;
I R is R1 _ R2, and � j= R1 or � j= R2;
I R is R1 ^ R2, � j= R1 and � j= R2.

De�nition
FILTER : selects mappings that satisfy a condition

JP FILTER RKG = f � 2 JPKG j � j= Rg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 25 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

I Syntax and formal semantics

I Complexity of the evaluation problem

I Optimization methods

I Expressiveness

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 26 / 108

The evaluation problem

Input:
A mapping� , a graph patternP, and an RDF graphG

Question:
Does� belong to the evaluation ofP over G?

Does� 2 JPKG?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 27 / 108

The evaluation problem

Input:
A mapping� , a graph patternP, and an RDF graphG

Question:
Does� belong to the evaluation ofP over G?

Does� 2 JPKG?

We study thecombined complexityof the evaluation problem.
I � , P and G are part of the input.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 27 / 108

Evaluation of simple patterns is polynomial

Theorem (PAG06)

For patterns using onlyAND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern� size of the graph).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 28 / 108

Evaluation of simple patterns is polynomial

Theorem (PAG06)

For patterns using onlyAND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern� size of the graph).

Proof sketch
I Check that the mapping makes every triple to match.

I Then check that the mapping satis�es the FILTERs.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 28 / 108

Evaluation including UNION is NP-complete

Theorem (PAG06)
The evaluation problem is NP-complete forAND-FILTER-UNION
expressions.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 29 / 108

Evaluation including UNION is NP-complete

Theorem (PAG06)
The evaluation problem is NP-complete forAND-FILTER-UNION
expressions.

Proof sketch of hardness
I Reduction from3SAT.
I : bound is used to verify that a satisfying truth assignment is

well de�ned.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 29 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Let ' = (q _ r _ : s) ^ (: q _ r _ : t)

We construct a mapping� , a graph patternP and an RDF graph
G such that:

' is satis�able i� � 2 JPKG

G is de�ned asf (1; is ; true)g

P includes the variables ?Q, ?Q, ?R, ?R, ?S, ?S, ?T and ?T .

I � (?Q) = 1 indicates that q is assigned valuetrue ,

I � (?Q) = 1 indicates that : q is assigned valuetrue .

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 30 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Thus, the following patternP' almost does the job.
�
(?Q; is ; true) UNION (?R; is ; true) UNION (?S; is ; true)

�
AND

�
(?Q; is ; true) UNION (?R; is ; true) UNION (?T ; is ; true)

�

Why does it fail?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 31 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Thus, the following patternP' almost does the job.
�
(?Q; is ; true) UNION (?R; is ; true) UNION (?S; is ; true)

�
AND

�
(?Q; is ; true) UNION (?R; is ; true) UNION (?T ; is ; true)

�

Why does it fail?
I It can assign value 1 to ?Q and ?Q.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 31 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Thus, the following patternP' almost does the job.
�
(?Q; is ; true) UNION (?R; is ; true) UNION (?S; is ; true)

�
AND

�
(?Q; is ; true) UNION (?R; is ; true) UNION (?T ; is ; true)

�

Why does it fail?
I It can assign value 1 to ?Q and ?Q.

Solution: consider the following conditionR:

(: bound(?Q) _ : bound(?Q)) ^ (: bound(?R) _ : bound(?R)) ^

(: bound(?S) _ : bound(?S)) ^ (: bound(?T) _ : bound(?T))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 31 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Then (P' FILTER R) does the job.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 32 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Then (P' FILTER R) does the job.
I But how do we de�ne� ?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 32 / 108

Evaluation including UNION is NP-complete: Idea of the
reduction

Then (P' FILTER R) does the job.
I But how do we de�ne� ?

Final step: de�neP as:
�
(?Q; is ; true) AND (?Q; is ; true) AND (?R; is ; true) AND

(?R; is ; true) AND (?S; is ; true) AND (?S; is ; true) AND

(?T ; is ; true) AND (?T ; is ; true)
�

AND
�
P' FILTER R

�

and � as:
?Q ?Q ?R ?R ?S ?S ?T ?T
1 1 1 1 1 1 1 1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 32 / 108

In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)
For general patterns that includeOPT operator, the evaluation
problem is PSPACE-complete.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 33 / 108

In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)
For general patterns that includeOPT operator, the evaluation
problem is PSPACE-complete.

Can we evaluate SPARQL queries in practice e�ciently?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 33 / 108

In general: Evaluation problem is PSPACE-complete

Theorem (PAG06)
For general patterns that includeOPT operator, the evaluation
problem is PSPACE-complete.

Can we evaluate SPARQL queries in practice e�ciently?
I We need to understand how the complexity depends on the

operators of SPARQL.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 33 / 108

A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION � � � UNION Pn

where each Pi is UNION{free.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 34 / 108

A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION � � � UNION Pn

where each Pi is UNION{free.

Graph pattern expressions are usually in this normal form.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 34 / 108

A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION � � � UNION Pn

where each Pi is UNION{free.

Graph pattern expressions are usually in this normal form.

Corollary
The evaluation problem is polynomial forAND-FILTER-UNION
expressions in the UNION normal form.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 34 / 108

PSPACE-completeness: A stronger lower bound

Theorem (PAG06)
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 35 / 108

PSPACE-completeness: A stronger lower bound

Theorem (PAG06)
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof sketch of hardness
I Reduction fromQBF: A pattern encodes a quanti�ed

propositional formula

8x19y18x29y2 � � � :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 35 / 108

PSPACE-completeness: A stronger lower bound

Theorem (PAG06)
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof sketch of hardness
I Reduction fromQBF: A pattern encodes a quanti�ed

propositional formula

8x19y18x29y2 � � � :

I Nested OPTs are used to encode quanti�er alternation.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 35 / 108

PSPACE-hardness: A closer look

Assume' = 8x19y1 , where = (x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G :

R :

P :

P' :

� 0 :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 36 / 108

PSPACE-hardness: A closer look

Assume' = 8x19y1 , where = (x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R :

P :

P' :

� 0 :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 36 / 108

PSPACE-hardness: A closer look

Assume' = 8x19y1 , where = (x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P :

P' :

� 0 :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 36 / 108

PSPACE-hardness: A closer look

Assume' = 8x19y1 , where = (x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER R)

P' :

� 0 :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 36 / 108

PSPACE-hardness: A closer look

Assume' = 8x19y1 , where = (x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER R)

P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

� 0 :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 36 / 108

PSPACE-hardness: A closer look

Assume' = 8x19y1 , where = (x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER R)

P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

� 0 : f ?B0 7! 1g

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 36 / 108

PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 37 / 108

PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 37 / 108

PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 37 / 108

PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 37 / 108

PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 37 / 108

PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : (((a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 37 / 108

What is the source of the high complexity?

Theorem (SML08)
The evaluation problem remains PSPACE-complete forOPT
expressions

The use of the OPT operator makes the evaluation problem
harder.

I How can we deal with this operator? How can we reduce the
complexity?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 38 / 108

What is the source of the high complexity?

Theorem (SML08)
The evaluation problem remains PSPACE-complete forOPT
expressions

The use of the OPT operator makes the evaluation problem
harder.

I How can we deal with this operator? How can we reduce the
complexity?

I The formal study has some interesting practical implications.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 38 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

"
?B0

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

" "
?B0 ?B0

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

" " "
?B0 � ?B0

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

" " "
?B0 � ?B0

Is ?B0 giving optional information forP1?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

" " "
?B0 � ?B0

Is ?B0 giving optional information forP1?
I No, ?B0 is giving optional information for (a; true ; ?B0)?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in our reduction (and in [SML08]) are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P))

" " "
?B0 � ?B0

Is ?B0 giving optional information forP1?
I No, ?B0 is giving optional information for (a; true ; ?B0)?

These patterns rarely occur in practice.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 39 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
"

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
" " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

"

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

" "

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

(� � � � � � � � � � � � (A OPT B) � � � � � � � � � � � �)
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

�� " "

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 40 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership
First step: Prove that if P0 is obtained by removing some optional
parts of P, then P0 cannot be more informative thanP.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership
First step: Prove that if P0 is obtained by removing some optional
parts of P, then P0 cannot be more informative thanP.

I This holds for well-designed patterns.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Theorem (PAG09)
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

Proof sketch of membership
First step: Prove that if P0 is obtained by removing some optional
parts of P, then P0 cannot be more informative thanP.

I This holds for well-designed patterns.

I This does not hold in general:G = f (1; a; b); (2; c; d)g and

(?X ; a; b) OPT ((?Y ; c; d) OPT (?X ; c; d))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 41 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

I � v � 0: � and � 0 are compatible and dom(�) � dom(� 0)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

I � v � 0: � and � 0 are compatible and dom(�) � dom(� 0)

I
 v
 0: for every� 2
, there exists � 0 2
 0 s.t. � v � 0

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

I � v � 0: � and � 0 are compatible and dom(�) � dom(� 0)

I
 v
 0: for every� 2
, there exists � 0 2
 0 s.t. � v � 0

I P0 is a reduction ofP: P0 can be obtained fromP by
replacing a sub-formula (P1 OPT P2) of P by P1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Notation:

I � v � 0: � and � 0 are compatible and dom(�) � dom(� 0)

I
 v
 0: for every� 2
, there exists � 0 2
 0 s.t. � v � 0

I P0 is a reduction ofP: P0 can be obtained fromP by
replacing a sub-formula (P1 OPT P2) of P by P1

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P0 = t1 AND (t2 OPT (t3 AND t4))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 42 / 108

AND-FILTER-OPT fragment: Reducing the complexity

I E: Reexive and transitive closure of the reduction relation

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 43 / 108

AND-FILTER-OPT fragment: Reducing the complexity

I E: Reexive and transitive closure of the reduction relation

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P0 = t1 AND (t2 OPT (t3 AND t4))

P00 = t1 AND t2

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 43 / 108

AND-FILTER-OPT fragment: Reducing the complexity

I E: Reexive and transitive closure of the reduction relation

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

P0 = t1 AND (t2 OPT (t3 AND t4))

P00 = t1 AND t2

Proposition
If P is a UNION-free well-designed graph pattern and P0 E P, then
JP0KG v JPKG for every graph G.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 43 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the \compatible" information is not lost
by an OPT operator

I Again this holds for well-designed patterns.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the \compatible" information is not lost
by an OPT operator

I Again this holds for well-designed patterns.

More notation:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the \compatible" information is not lost
by an OPT operator

I Again this holds for well-designed patterns.

More notation:
I and(P): replace OPT by AND inP

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the \compatible" information is not lost
by an OPT operator

I Again this holds for well-designed patterns.

More notation:
I and(P): replace OPT by AND inP

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

and(P) = (t1 AND t2) AND (t2 AND (t3 AND t4))

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Second step: Prove that the \compatible" information is not lost
by an OPT operator

I Again this holds for well-designed patterns.

More notation:
I and(P): replace OPT by AND inP

P = (t1 OPT t2) AND (t2 OPT (t3 AND t4))

and(P) = (t1 AND t2) AND (t2 AND (t3 AND t4))

I � is a partial solution forP over G: there existsP0 E P s.t.
� 2 Jand(P0)KG.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 44 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Let P be a UNION-free well-designed graph pattern andG an
RDF graph.

Proposition
� 2 JPKG if and only if � is a maximal(w.r.t. v) partial solution
for P over G.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 45 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Let P be a UNION-free well-designed graph pattern andG an
RDF graph.

Proposition
� 2 JPKG if and only if � is a maximal(w.r.t. v) partial solution
for P over G.

Third step: Show that it can be decided in polynomial time
whether� is a partial solution forP over G

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 45 / 108

AND-FILTER-OPT fragment: Reducing the complexity

Last step: Combine all the previous results

To verify whether� 62JPKG:

(1) Check whether� is not a partial solution forP over G.
I If this is the case, then returntrue , else go to (2).

(2) Guess a mapping� 0 such that � v � 0 and � 0 6v� .
(2.1) If � 0 is a partial solution forP overG, then return true .

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 46 / 108

A corollary of the previous result

Corollary
The evaluation problem is coNP-complete for patterns of theform
P1 UNION P2 UNION � � � UNION Pk , where each Pi is a
well-designedAND-FILTER-OPT pattern.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 47 / 108

A corollary of the previous result

Corollary
The evaluation problem is coNP-complete for patterns of theform
P1 UNION P2 UNION � � � UNION Pk , where each Pi is a
well-designedAND-FILTER-OPT pattern.

Can we use this in practice?
I Well-designed patterns are suitable for optimization.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 47 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

I Syntax and formal semantics

I Complexity of the evaluation problem

I Optimization methods

I Expressiveness

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 48 / 108

Classical optimization

I Classical optimization assumesnull-rejection.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 49 / 108

Classical optimization

I Classical optimization assumesnull-rejection.
I Null-rejection: the join/outer{join condition must fail in the

presence of nulls.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 49 / 108

Classical optimization

I Classical optimization assumesnull-rejection.
I Null-rejection: the join/outer{join condition must fail in the

presence of nulls.

I SPARQL operations arenot null-rejecting.
I By de�nition of compatible mappings.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 49 / 108

Classical optimization

I Classical optimization assumesnull-rejection.
I Null-rejection: the join/outer{join condition must fail in the

presence of nulls.

I SPARQL operations arenot null-rejecting.
I By de�nition of compatible mappings.

I Can we use classical optimization in the context of SPARQL?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 49 / 108

Classical optimization

I Classical optimization assumesnull-rejection.
I Null-rejection: the join/outer{join condition must fail in the

presence of nulls.

I SPARQL operations arenot null-rejecting.
I By de�nition of compatible mappings.

I Can we use classical optimization in the context of SPARQL?
I Well-designed patterns are suitable for reordering, and then for

classical optimization.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 49 / 108

Well{designed graph patterns and optimization

Consider the following rules:

((P1 OPT P2) FILTER R) �! ((P1 FILTER R) OPT P2) (1)

(P1 AND (P2 OPT P3)) �! ((P1 AND P2) OPT P3) (2)

((P1 OPT P2) AND P3) �! ((P1 AND P3) OPT P2) (3)

Proposition
If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), thenQ is a well-designed pattern
equivalent to P.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 50 / 108

Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQ1, : : :, Qk such that:

P is constructed fromQ1, : : :, Qk by using only the OPT operator.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 51 / 108

Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQ1, : : :, Qk such that:

P is constructed fromQ1, : : :, Qk by using only the OPT operator.

Theorem (PAG06)
Every well-designed pattern is equivalent to a pattern inOPT
normal form.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 51 / 108

Well{designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P.

I TransformP into an equivalent patternQ in OPT normal form, and
then evaluateQ.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 52 / 108

Well{designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P.

I TransformP into an equivalent patternQ in OPT normal form, and
then evaluateQ.

Why this could be a good approach?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 52 / 108

Well{designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P.

I TransformP into an equivalent patternQ in OPT normal form, and
then evaluateQ.

Why this could be a good approach?

I FILTER should be applied as soon as possible.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 52 / 108

Well{designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P.

I TransformP into an equivalent patternQ in OPT normal form, and
then evaluateQ.

Why this could be a good approach?

I FILTER should be applied as soon as possible.

I AND is better as a �lter than OPT:

JP1 AND P2KG � JP1 OPT P2KG:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 52 / 108

Well{designed graph patterns and optimization

Previous theorem suggests a strategy for evaluating a well-designed
pattern P.

I TransformP into an equivalent patternQ in OPT normal form, and
then evaluateQ.

Why this could be a good approach?

I FILTER should be applied as soon as possible.

I AND is better as a �lter than OPT:

JP1 AND P2KG � JP1 OPT P2KG:

An experimental evaluation is needed.

I The �nal strategy will probably have to consider alternative
re-orderings (not always the OPT normal form).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 52 / 108

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

I Syntax and formal semantics

I Complexity of the evaluation problem

I Optimization methods

I Expressiveness

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 53 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?
I How do we prove that a language has a good expressive

power?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?
I How do we prove that a language has a good expressive

power?

One alternative: Compare it with a well-known language

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?
I How do we prove that a language has a good expressive

power?

One alternative: Compare it with a well-known language

I Relational Algebra is a very good alternative

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 54 / 108

Is SPARQL expressive enough?

How do we study the expressive power of a language?
I How do we prove that a language has a good expressive

power?

One alternative: Compare it with a well-known language

I Relational Algebra is a very good alternative

I We show that SPARQL and Relational Algebra have the same
expressive power

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 54 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

I Conditional XPath is the same as FO

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

I Conditional XPath is the same as FOover trees [M04]

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

I Conditional XPath is the same as FOover trees [M04]

We use the following relational schema:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

I Conditional XPath is the same as FOover trees [M04]

We use the following relational schema:
I triple(�; �; �)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

I Conditional XPath is the same as FOover trees [M04]

We use the following relational schema:
I triple(�; �; �)
I N(�): It only contains valuenull

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We �rst have to say over which class of structure we compare
Relational Algebra with SPARQL.

I Conditional XPath is the same as FOover trees [M04]

We use the following relational schema:
I triple(�; �; �)
I N(�): It only contains valuenull

Every RDF graphG can be naturally translated into an instanceIG
over this schema.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 55 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra:nr-Datalog:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 56 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra:nr-Datalog:

Answer (X) Q(X ; Y); Y = a; : R(Y ; Y)

R(U; V) Q(U; Z); Q(Z ; V)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 56 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra:nr-Datalog:

Answer (X) Q(X ; Y); Y = a; : R(Y ; Y)

R(U; V) Q(U; Z); Q(Z ; V)

Last point: It is easy to prove that

Answer (X) triple(X ; Y ; Z)

is not equivalent to any SPARQL graph pattern.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 56 / 108

But not so fast ...

We use a language that has the same expressive power as
Relational Algebra:nr-Datalog:

Answer (X) Q(X ; Y); Y = a; : R(Y ; Y)

R(U; V) Q(U; Z); Q(Z ; V)

Last point: It is easy to prove that

Answer (X) triple(X ; Y ; Z)

is not equivalent to any SPARQL graph pattern.
I We need to consider theSELECToperator

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 56 / 108

SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ; P):
I P is an SPARQL graph pattern
I W is subset of var(P)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 57 / 108

SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ; P):
I P is an SPARQL graph pattern
I W is subset of var(P)

Notation: � jW is the restriction of� to W
I dom(� jW) = dom(�) \ W , and � jW (?X) = � (?X) for every

?X 2 dom(�) \ W

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 57 / 108

SPARQL SELECT language

A SPARQL SELECT query is a tuple (W ; P):
I P is an SPARQL graph pattern
I W is subset of var(P)

Notation: � jW is the restriction of� to W
I dom(� jW) = dom(�) \ W , and � jW (?X) = � (?X) for every

?X 2 dom(�) \ W

De�nition
Given an RDF graphG:

J(W ; P)KG = f � jW j � 2 JPKGg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 57 / 108

SPARQL SELECT� nr-Datalog:

Theorem (AG08)
Every query expressible in SPARQL SELECT is expressible in
nr-Datalog: .

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 58 / 108

SPARQL SELECT� nr-Datalog:

Theorem (AG08)
Every query expressible in SPARQL SELECT is expressible in
nr-Datalog: .

Example
((?X ; a; b) OPT (?X ; c; ?Z)) is equivalent to:

Answer (X ; Z) triple(X ; a; b); triple(X ; c; Z)

Answer (X ; Z) triple(X ; a; b); N(Z); : q(X)

q(X) triple(X ; c; V)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 58 / 108

nr-Datalog: � SPARQL SELECT

Theorem (AG08)

Every query overf tripleg expressible in nr-Datalog: is expressible
in SPARQL SELECT.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 59 / 108

nr-Datalog: � SPARQL SELECT

Theorem (AG08)

Every query overf tripleg expressible in nr-Datalog: is expressible
in SPARQL SELECT.

But SPARQL SELECT is so positive!

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 59 / 108

nr-Datalog: � SPARQL SELECT

Theorem (AG08)

Every query overf tripleg expressible in nr-Datalog: is expressible
in SPARQL SELECT.

But SPARQL SELECT is so positive!

I Di�erence operator is de�nable in SPARQL!

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 59 / 108

MINUS operator

Let MINUS be de�ned as:

JP1 MINUS P2KG = JP1KG r JP2KG

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 60 / 108

MINUS operator

Let MINUS be de�ned as:

JP1 MINUS P2KG = JP1KG r JP2KG

Proposition
(P1 MINUS P2) is equivalent to:
�

P1 OPT (P2 AND (?X1; ?X2; ?X3))
�

FILTER : bound(?X1);

where?X1; ?X2; ?X3 are mentioned neither in P1 nor in P2.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 60 / 108

SPARQL SELECT� nr-Datalog: : Example

Consider the following nr-Datalog: program:

Answer (X) triple(X ; a; b); : q(X)

q(X) triple(X ; c; Y); triple(Y ; c; Z)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 61 / 108

SPARQL SELECT� nr-Datalog: : Example

Consider the following nr-Datalog: program:

Answer (X) triple(X ; a; b); : q(X)

q(X) triple(X ; c; Y); triple(Y ; c; Z)

This program is equivalent to:

(?X ; a; b) MINUS
�

(?X ; c; ?Y) AND (?Y ; c; ?Z)
�

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 61 / 108

Second part: Ground RDF with RDFS vocabulary

I Syntax and formal semantics

I Querying RDFS data
I nSPARQL: A navigational query language for RDFS
I Expressiveness
I Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 62 / 108

Second part: Ground RDF with RDFS vocabulary

I Syntax and formal semantics

I Querying RDFS data
I nSPARQL: A navigational query language for RDFS
I Expressiveness
I Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 63 / 108

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 64 / 108

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

How can one query RDFS data?

I Evaluating queries which involve this vocabulary is
challenging.

I There is not yet consensus in the Semantic Web community
on how to de�ne a query language for RDFS.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 64 / 108

A simple SPARQL query:(Messi; rdf:type ; person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 65 / 108

Semantics of RDFS

Checking whethera triple t is in a graphG is the basic step when
answering queries over RDF.

I For the case of RDFS, we need to check whethert is implied byG.

The notion of entailment in RDFS can be de�ned in terms of
classical notions such as model, interpretation, etc.

I As for the case of �rst-order logic

This notion can also be characterized by a set ofinference rules.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 66 / 108

An inference system for RDFS

Inference rule:R
R0

I R and R0 are sequences of RDF triples including symbolsA ,
X , : : :, to be replaced by elements fromU.

Instantiation of a rule:
� (R)
� (R0)

I � : fA ; X ; : : :g ! U

Application of a rule R
R0 to an RDF graphG:

I Select an assignment� : fA ; X ; : : :g ! U.

I if � (R) � G, then obtainG [� (R0)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 67 / 108

An inference system for RDFS

Sub-property :
(A ;rdf:sp ;B) (B;rdf:sp ;C)

(A ;rdf:sp ;C)

(A ;rdf:sp ;B) (X ;A ;Y)
(X ;B;Y)

Subclass :
(A ;rdf:sc ;B) (B;rdf:sc ;C)

(A ;rdf:sc ;C)

(A ;rdf:sc ;B) (X ;rdf:type ;A)
(X ;rdf:type ;B)

Typing :
(A ;rdf:dom ;B) (X ;A ;Y)

(X ;rdf:type ;B)

(A ;rdf:range ;B) (X ;A ;Y)
(Y;rdf:type ;B)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 68 / 108

Entailment in RDFS

Theorem (H03,GHM04,MPG07)
The previous system of inference rules characterize the notion of
entailment in ground RDFS.

Thus, a triplet can be deduced from an RDF graphG (G j= t) if
there exists an RDFG0 such that:

I t 2 G0

I G0 can be obtained fromG by successively applying the rules
in the previous system.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 69 / 108

Entailment in RDFS: Closure of a graph

De�nition
The closure of an RDFS graphG (cl(G)) is the graph obtained by
adding toG all the triples that are implied byG.

A basic property of the closure:
I G j= t i� t 2 cl(G)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 70 / 108

Second part: Ground RDF with RDFS vocabulary

I Syntax and formal semantics

I Querying RDFS data
I nSPARQL: A navigational query language for RDFS
I Expressiveness
I Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 71 / 108

Querying RDFS data

Basic step for answering queries over RDFS:
I Checking whether a triplet is in cl(G).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 72 / 108

Querying RDFS data

Basic step for answering queries over RDFS:
I Checking whether a triplet is in cl(G).

De�nition
The RDFS-evaluation of a graph pattern P over an RDFS graph G
is de�ned as the evaluation ofP over cl(G):

JPKrdfs
G = JPKcl(G)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 72 / 108

Example:(Messi; rdf:type ; person)over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 73 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

I The size of the closure ofG can be quadratic in the size ofG.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

I The size of the closure ofG can be quadratic in the size ofG.

I Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 74 / 108

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

I The size of the closure ofG can be quadratic in the size ofG.

I Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

I The approach is not goal-oriented.

When evaluating (a; rdf:sc ; b), a goal-oriented approach should
not compute cl(G):

I It should just verify whether there exists a path froma to b in
G where every edge has labelrdf:sc .

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 74 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

I Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 75 / 108

Navigational axes

Forward axes for an RDF triple (a; p; b):

next

ba
p

edge node

Backward axes for an RDF triple (a; p; b):

p
a b

next -1

node-1edge-1

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 76 / 108

A �rst attempt: rSPARQL

Syntax of navigational expressions:

exp := self j self ::a j axis j

axis::a j exp=exp j expjexp j exp�

wherea 2 U and axis2 f next , next -1 , edge, edge-1 , node,
node-1 g.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 77 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

Jexp1=exp2KG = f (x; y) j 9z (x; z) 2 Jexp1KG and
(z; y) 2 Jexp2KGg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

Jexp1=exp2KG = f (x; y) j 9z (x; z) 2 Jexp1KG and
(z; y) 2 Jexp2KGg

Jexp1jexp2KG = Jexp1KG [Jexp2KG

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

Jexp1=exp2KG = f (x; y) j 9z (x; z) 2 Jexp1KG and
(z; y) 2 Jexp2KGg

Jexp1jexp2KG = Jexp1KG [Jexp2KG

Jexp� KG = Jself KG [JexpKG [Jexp=expKG [
Jexp=exp=expKG [� � �

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 78 / 108

A �rst attempt: rSPARQL

Syntax of rSPARQL:

I Basic component: A triple of the form(x; exp; y)

I exp is a navigational expression
I x (resp. y) is either an element fromU or a variable

I Operators: AND, FILTER, UNION and OPT

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 79 / 108

A �rst attempt: rSPARQL

Syntax of rSPARQL:

I Basic component: A triple of the form(x; exp; y)

I exp is a navigational expression
I x (resp. y) is either an element fromU or a variable

I Operators: AND, FILTER, UNION and OPT

Triple (?X ; ?Y ; ?Z) is not allowed.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 79 / 108

A �rst attempt: rSPARQL

Syntax of rSPARQL:

I Basic component: A triple of the form(x; exp; y)

I exp is a navigational expression
I x (resp. y) is either an element fromU or a variable

I Operators: AND, FILTER, UNION and OPT

Triple (?X ; ?Y ; ?Z) is not allowed.
I It computes the closure!

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 79 / 108

rSPARQL: What can we express?

Example

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 80 / 108

rSPARQL: What can we express?

Example
I (Messi; next ::lives in ; Spain): Equivalent to SPARQL

pattern (Messi; lives in ; Spain)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 80 / 108

rSPARQL: What can we express?

Example
I (Messi; next ::lives in ; Spain): Equivalent to SPARQL

pattern (Messi; lives in ; Spain)

I (?X ; edge::a; ?Y): Equivalent to SPARQL pattern
(?X ; ?Y ; a)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 80 / 108

rSPARQL: What can we express?

Example
I (Messi; next ::lives in ; Spain): Equivalent to SPARQL

pattern (Messi; lives in ; Spain)

I (?X ; edge::a; ?Y): Equivalent to SPARQL pattern
(?X ; ?Y ; a)

I (?X ; node::a; ?Y): Equivalent to SPARQL pattern
(a; ?X ; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 80 / 108

rSPARQL: What can we express?

Example
I (Messi; next ::lives in ; Spain): Equivalent to SPARQL

pattern (Messi; lives in ; Spain)

I (?X ; edge::a; ?Y): Equivalent to SPARQL pattern
(?X ; ?Y ; a)

I (?X ; node::a; ?Y): Equivalent to SPARQL pattern
(a; ?X ; ?Y)

I (?X ; (next ::(rdf:sc))+ ; ?Y): Veri�es whether ?X is a
subclass of ?Y .

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 80 / 108

A �rst attempt: rSPARQL

Semantics of rSPARQL: Evaluation oft = (? X ; exp; ?Y) over an
RDF graphG is the set of mappings� such that:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 81 / 108

A �rst attempt: rSPARQL

Semantics of rSPARQL: Evaluation oft = (? X ; exp; ?Y) over an
RDF graphG is the set of mappings� such that:

I The domain of� is f ?X ; ?Y g, and

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 81 / 108

A �rst attempt: rSPARQL

Semantics of rSPARQL: Evaluation oft = (? X ; exp; ?Y) over an
RDF graphG is the set of mappings� such that:

I The domain of� is f ?X ; ?Y g, and
I (� (?X); � (?Y)) 2 JexpKG

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 81 / 108

A �rst attempt: rSPARQL

Semantics of rSPARQL: Evaluation oft = (? X ; exp; ?Y) over an
RDF graphG is the set of mappings� such that:

I The domain of� is f ?X ; ?Y g, and
I (� (?X); � (?Y)) 2 JexpKG

Example
What does(?X; (next ::KLM j next ::AirFrance)+ ; ?Y) represent?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 81 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 82 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

For every RDFS graphG and SPARQL patternP, we would like to
�nd a rSPARQL patternQ such that:

JPKrdfs
G = JQKG

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 82 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

For every RDFS graphG and SPARQL patternP, we would like to
�nd a rSPARQL patternQ such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X ; ?Y ; ?Z).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 82 / 108

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

For every RDFS graphG and SPARQL patternP, we would like to
�nd a rSPARQL patternQ such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X ; ?Y ; ?Z).
I We need to use a fragment of SPARQL.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 82 / 108

A good fragment of SPARQL for our study

T : Set of triples (x; y; z) wherex 2 U or y 2 U or z 2 U.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 83 / 108

A good fragment of SPARQL for our study

T : Set of triples (x; y; z) wherex 2 U or y 2 U or z 2 U.
I (?X ; a; b), (?X ; a; ?Y) and (?X ; ?Y ; a)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 83 / 108

A good fragment of SPARQL for our study

T : Set of triples (x; y; z) wherex 2 U or y 2 U or z 2 U.
I (?X ; a; b), (?X ; a; ?Y) and (?X ; ?Y ; a)

T -SPARQL:Fragment of SPARQL where triple patterns are taken
from T .

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 83 / 108

Is rSPARQL a good language for RDFS?

Theorem (PAG08)
There exists aT -SPARQL pattern P for which there is no
rSPARQL pattern Q such thatJPKrdfs

G = JQKG for every RDF
graph G.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 84 / 108

Is rSPARQL a good language for RDFS?

Theorem (PAG08)
There exists aT -SPARQL pattern P for which there is no
rSPARQL pattern Q such thatJPKrdfs

G = JQKG for every RDF
graph G.

The previous theorem holds even forP = (? X ; a; ?Y):

?Y

a
rdf:sp rdf:sp rdf:sp

?X

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 84 / 108

A successful attempt: Adding nesting

How can we captureT -SPARQL over RDFS?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 85 / 108

A successful attempt: Adding nesting

How can we captureT -SPARQL over RDFS?
I We adopt the notion of branching from XPath.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 85 / 108

A successful attempt: Adding nesting

How can we captureT -SPARQL over RDFS?
I We adopt the notion of branching from XPath.

Syntax ofnestedregular expressions:

exp := self j self ::a j axis j axis::a j

self ::[exp] j axis::[exp] j exp=exp j expjexp j exp�

wherea 2 U and axis2 f next , next -1 , edge, edge-1 , node,
node-1 g.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 85 / 108

A successful attempt: Adding nesting

Given an RDFS graphG, the semantics of nested regular
expressions is de�ned as follows:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 86 / 108

A successful attempt: Adding nesting

Given an RDFS graphG, the semantics of nested regular
expressions is de�ned as follows:

Jnext ::[exp]KG = f (x; y) j 9z; w 2 U (x; z; y) 2 G and
(z; w) 2 JexpKGg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 86 / 108

A successful attempt: Adding nesting

Given an RDFS graphG, the semantics of nested regular
expressions is de�ned as follows:

Jnext ::[exp]KG = f (x; y) j 9z; w 2 U (x; z; y) 2 G and
(z; w) 2 JexpKGg

Jedge::[exp]KG = f (x; y) j 9z; w 2 U (x; y; z) 2 G and
(z; w) 2 JexpKGg

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 86 / 108

CapturingT -SPARQL over RDFS

nSPARQL:De�ned as rSPARQL but replacing navigational
expressions by nested regular expressions.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 87 / 108

CapturingT -SPARQL over RDFS

nSPARQL:De�ned as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example
RDFS evaluation of (?X ; a; ?Y) can be obtained by using nSPARQL:

(?X ; next ::[(next ::(rdf:sp)) � =(self ::a)]; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 87 / 108

CapturingT -SPARQL over RDFS

nSPARQL:De�ned as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example
RDFS evaluation of (?X ; a; ?Y) can be obtained by using nSPARQL:

(?X ; next ::[(next ::(rdf:sp)) � =(self ::a)]; ?Y)

a
rdf:sp rdf:sp rdf:sp

?X

?Y

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 87 / 108

CapturingT -SPARQL over RDFS

nSPARQL:De�ned as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example
RDFS evaluation of (?X ; a; ?Y) can be obtained by using nSPARQL:

(?X ; next ::[(next ::(rdf:sp)) � =(self ::a)]; ?Y)

?Y

a
rdf:sp rdf:sp rdf:sp

?X

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 87 / 108

Second part: Ground RDF with RDFS vocabulary

I Syntax and formal semantics

I Querying RDFS data
I nSPARQL: A navigational query language for RDFS
I Expressiveness
I Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 88 / 108

nSPARQL capturesT -SPARQL over RDFS

Theorem (PAG08)
For everyT -SPARQL pattern P, there exists an nSPARQL pattern
Q such thatJPKrdfs

G = JQKG for every RDF graph G.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 89 / 108

nSPARQL capturesT -SPARQL over RDFS

Theorem (PAG08)
For everyT -SPARQL pattern P, there exists an nSPARQL pattern
Q such thatJPKrdfs

G = JQKG for every RDF graph G.

Proof sketch
Replace (?X ; a; ?Y) by (?X ; trans(a); ?Y), where:

trans(rdf:dom) = next ::(rdf:dom)
trans(rdf:range) = next ::(rdf:range)
trans(rdf:sc) = (next ::(rdf:sc))+

trans(rdf:sp) = (next ::(rdf:sp))+

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 89 / 108

nSPARQL: Capturing SPARQL over RDFS

trans(rdf:type) =

next ::(rdf:type)=(next ::(rdf:sc)) � j

edge=(next ::(rdf:sp)) � =next ::(rdf:dom)=(next ::(rdf:sc)) � j

node-1 =(next ::(rdf:sp)) � =next ::(rdf:range)=(next ::(rdf:sc)) �

trans(p) = next ::[(next ::(rdf:sp)) � =self ::p]

for p =2 f rdf:sc ; rdf:sp ; rdf:range ; rdf:dom ; rdf:type g

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 90 / 108

The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

A natural query:(?X ; (next ::[(next ::(rdf:sp)) � =(self ::travel)])+ ; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

The extra expressive power of nSPARQL

transport

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query:(?X ; (next ::[(next ::(rdf:sp)) � =(self ::travel)])+ ; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

The extra expressive power of nSPARQL

transport

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query:(?X ; (next ::[(next ::(rdf:sp)) � =(self ::travel)])+ ; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B travel CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query:(?X ; (next ::[(next ::(rdf:sp)) � =(self ::travel)])+ ; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query:(?X ; (next ::[(next ::(rdf:sp)) � =(self ::travel)])+ ; ?Y)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query:(?X ; (next ::[(next ::(rdf:sp)) � =(self ::travel)])+ ; ?Y)

I This query cannot be expressed in SPARQL over RDFS.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 91 / 108

Second part: Ground RDF with RDFS vocabulary

I Syntax and formal semantics

I Querying RDFS data
I nSPARQL: A navigational query language for RDFS
I Expressiveness
I Complexity of the evaluation problem

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 92 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?
I The lower bounds for SPARQL also apply in this case.

I Just take a look at the proofs

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?
I The lower bounds for SPARQL also apply in this case.

I Just take a look at the proofs

Are there any new problems to consider?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?
I The lower bounds for SPARQL also apply in this case.

I Just take a look at the proofs

Are there any new problems to consider?
I What is the complexity of evaluating a nested regular

expression?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 93 / 108

The evaluation problem for nSPARQL

What is the complexity of the evaluation problem for nSPARQL?
I The lower bounds for SPARQL also apply in this case.

I Just take a look at the proofs

Are there any new problems to consider?
I What is the complexity of evaluating a nested regular

expression?
I Can this be done e�ciently?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 93 / 108

The evaluation problem for nested regular expressions

Input:
A pair (a; b) 2 U � U, a nested regular expressionexp and an RDF
graph G

Question:
Does (a; b) 2 JexpKG?

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 94 / 108

The evaluation problem for nested regular expressions

Theorem (PAG08)
The evaluation problem for nested regular expressions is solvable in
time O(jGj � j expj).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 95 / 108

The evaluation problem for nested regular expressions

Theorem (PAG08)
The evaluation problem for nested regular expressions is solvable in
time O(jGj � j expj).

Proof sketch
Use an e�cient evaluation algorithm for PDL.

I There are a few issues that have to be considered.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 95 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

(2) Construct an automatonA G from G:

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

(2) Construct an automatonA G from G:
I The states ofA G are the elements mentioned inG

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

(2) Construct an automatonA G from G:
I The states ofA G are the elements mentioned inG
I For every (a; b; c) 2 G, automatonA G contains:

(a; next ::b; c) (a; edge::c; b) (b; node::a; c)
(c; next -1 ::b; a) (b; edge-1 ::c; a) (c; node-1 ::a; b)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

(2) Construct an automatonA G from G:
I The states ofA G are the elements mentioned inG
I For every (a; b; c) 2 G, automatonA G contains:

(a; next ::b; c) (a; edge::c; b) (b; node::a; c)
(c; next -1 ::b; a) (b; edge-1 ::c; a) (c; node-1 ::a; b)

I Every state is �nal

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

(2) Construct an automatonA G from G:
I The states ofA G are the elements mentioned inG
I For every (a; b; c) 2 G, automatonA G contains:

(a; next ::b; c) (a; edge::c; b) (b; node::a; c)
(c; next -1 ::b; a) (b; edge-1 ::c; a) (c; node-1 ::a; b)

I Every state is �nal

(3) ComputeA G � A exp

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

The evaluation problem for nested regular expressions

Simple example: pair (a; b), RDF graphG and navigational
expressionexp

(1) Transformexp into an � -NFA A exp

(2) Construct an automatonA G from G:
I The states ofA G are the elements mentioned inG
I For every (a; b; c) 2 G, automatonA G contains:

(a; next ::b; c) (a; edge::c; b) (b; node::a; c)
(c; next -1 ::b; a) (b; edge-1 ::c; a) (c; node-1 ::a; b)

I Every state is �nal

(3) ComputeA G � A exp

(4) Verify whether(b; qf) is reachable from(a; q0) in A G � A exp

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 96 / 108

Third part: RDF with RDFS vocabulary

I Formal semantics

I A little bit about complexity

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 97 / 108

Third part: RDF with RDFS vocabulary

I Formal semantics

I A little bit about complexity

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 98 / 108

Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 99 / 108

What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

lives in

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 100 / 108

A fundamental notion: homomorphism

De�nition
h : U [B ! U [B is a homomorphismfrom G1 to G2 if:

I h(c) = c for everyc 2 U;
I for every (a; b; c) 2 G1, (h(a); h(b); h(c)) 2 G2

Notation: G1 ! G2

Example

a

b

B
p

p

a

b

p

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 101 / 108

Homomorphism and the notion of entailment

Example
In this case:G1 6! G2 and G2 ! G1

G1

a

b

B
p

p

p

a

b

p

G2

Intuitively: G1 contains more information thanG2

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 102 / 108

A general notion of entailment

In this general scenario, entailment can also be de�ned in terms of
classical notions such as model, interpretation, etc.

I As for the case of RDFS graphs without blank nodes

This notion can also be characterized by a set ofinference rules.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 103 / 108

A general system of inference rules

Existential rule :

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule : G1
G2

if G2 ! G1

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule : G1
G2

if G2 ! G1

Subproperty rules :
(p; rdf:sp ; q) (a; p; b)

(a; q; b)

Subclass rules :

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule : G1
G2

if G2 ! G1

Subproperty rules :
(p; rdf:sp ; q) (a; p; b)

(a; q; b)

Subclass rules :
(a; rdf:sc ; b) (b; rdf:sc ; c)

(a; rdf:sc ; c)

Typing rules :

Implicit typing :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule : G1
G2

if G2 ! G1

Subproperty rules :
(p; rdf:sp ; q) (a; p; b)

(a; q; b)

Subclass rules :
(a; rdf:sc ; b) (b; rdf:sc ; c)

(a; rdf:sc ; c)

Typing rules :
(p; rdf:dom ; c) (a; p; b)

(a; rdf:type ; c)

Implicit typing :

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule : G1
G2

if G2 ! G1

Subproperty rules :
(p; rdf:sp ; q) (a; p; b)

(a; q; b)

Subclass rules :
(a; rdf:sc ; b) (b; rdf:sc ; c)

(a; rdf:sc ; c)

Typing rules :
(p; rdf:dom ; c) (a; p; b)

(a; rdf:type ; c)

Implicit typing :
(q; rdf:dom ; a) (p; rdf:sp ; q) (b; p; c)

(b; rdf:type ; a)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule :

Subproperty rules :
(p; rdf:sp ; q) (a; p; b)

(a; q; b)

Subclass rules :

Typing rules :
(p; rdf:dom ; c) (a; p; b)

(a; rdf:type ; c)

Implicit typing :
(q; rdf:dom ; a) (p; rdf:sp ; q) (b; p; c)

(b; rdf:type ; a)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

A general system of inference rules

Existential rule :

Subproperty rules :
(p; rdf:sp ; q) (a; p; b)

(a; q; b)

Subclass rules :

Typing rules :
(p; rdf:dom ; c) (a; p; b)

(a; rdf:type ; c)

Implicit typing :
(B; rdf:dom ; a) (p; rdf:sp ; B) (b; p; c)

(b; rdf:type ; a)

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 104 / 108

RDFS Entailment

Theorem (H03,GHM04,MPG07)
The previous system of inference rules characterize the notion of
entailment inRDFS.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 105 / 108

RDFS Entailment

Theorem (H03,GHM04,MPG07)
The previous system of inference rules characterize the notion of
entailment inRDFS.

This system can be used to de�ne cl(G).

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 105 / 108

RDFS Entailment

Theorem (H03,GHM04,MPG07)
The previous system of inference rules characterize the notion of
entailment inRDFS.

This system can be used to de�ne cl(G).
I This can be used to de�ne the semantics of a query language

over RDFS data.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 105 / 108

Third part: RDF with RDFS vocabulary

I Formal semantics

I A bit about complexity

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 106 / 108

A little about complexity

Complexity (GHM04)
RDFS entailment is NP-complete.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 107 / 108

A little about complexity

Complexity (GHM04)
RDFS entailment is NP-complete.

Proof sketch
Membership in NP: IfG j= t , then there exists a polynomial-size
proof of this fact.

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 107 / 108

Thank you!

M. Arenas, C. Gutierrez and J. P�erez { Foundations of RDF Dat abases 108 / 108

