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RDF in a nutshell

I RDF is the W3C proposal framework for representing
information in the Web.

I Abstract syntax based on directed labeled graph.

I Schema de nition languageRDFS): De ne new vocabulary
(typing, inheritance of classes and properties).

I Formal semantics.

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 457



RDF formal model

U
A
oo | Predicate U = setof Uris
B = set of Blank nodes
JE JEEEERN L = set of Literals
U B U B L
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B = set of Blank nodes
> o FOE TN L = set of Literals
U B U B L

(s;p;0)2 (U B) U (U[ B[ L)is called anRDF triple

A set of RDF triples is called aRDF graph
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RDF: An example

rdf:dom ; rdf:range

M. Arenas
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Querying RDF: SPARQL

I SPARQL is the W3C candidate recommendation query
language for RDF.

I SPARQL is a graph-matching query language.

I A SPARQL query consists of three parts:

I Pattern matching: optional, union, nesting, ltering.
I Solution modi ers: projection, distinct, order, limit, oset.
I Qutput part: construction of new triples;: .
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A simple RDF query language

SELECT ?Name
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A simple RDF query language

SELECT ?Name ?Email
WHERE

{

?X :name ?Name
?X :email ?Email

}
In general, in a query we have:

H P

I Head: processing of some variables.

I Body: pattern matching expression.

We focus onP.
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But things can become more complex ...

{P1
Interesting features of pattern P2}
matching on graphs
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But things can become more complex ...

{{P1
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
I Grouping (P3
I Optional parts P4
I Nesting OPTIONAL { P7
. OPTIONAL { P8} } }
I Union of patterns }
I Filtering UNION
{ P9
FILTER( R ) }
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A formal semantics for SPARQL

A formal approach would be bene cial for:
I Clarifying corner cases
I Helping in the implementation process
I Providing sound foundations
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A formal semantics for SPARQL

A formal approach would be bene cial for:
I Clarifying corner cases
I Helping in the implementation process
I Providing sound foundations

In this presentation:
I A formal compositional semantics for SPARQL
I A study of the complexity of evaluating SPARQL
I Optimization procedures
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A standard algebraic syntax

I Triple patterns: just triples + variablesyithout blanks
?X :name "john" (?X; name, john)

I Graph patterns: full parenthesized algebra

{ PL P2} (P1 AND P;)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1} UNION { P2} (P1 UNION P2)

{ PLFILTER (R )} (P; FILTERR)
original SPARQL syntax algebraic syntax
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A standard algebraic syntax

I Explicit precedence/association

Example

{t1
2

OPTIONAL { t3 }
OPTIONAL { t4 }
t5

(((( t1 AND ty) OPT t3) OPT t4) AND ts)
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Mappings: building block for the semantics

De nition
A mapping is apartial function from variables to RDF terms.
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Mappings: building block for the semantics

De nition
A mapping is apartial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.
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The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition
The evaluationof t is the set of mappings that
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Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
R; | john
R1 J@edu.ex
P@edu.ex R,
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Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY ??Z N
1: | Ry | john
2. | Ry J@edu.ex
3 P@edu.ex R,
1] 2: | Ry | john| J@edu.ex
1l 3: | Rt |john | P@edu.ex Ry
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Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
1: | Ry | john
2. | Ry J@edu.ex
3 P@edu.ex R,
1] 2: | Ry | john| J@edu.ex
1l 3: | Rt |john | P@edu.ex Ry

I o, and 3 are not compatible
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Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 17 / 57



Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M>
I extending mappings iM; with compatible mappings i,

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 17 / 57



Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M
I extending mappings i1 with compatible mappings iM»
Di erence: Mir Ms
I mappings inM; that cannot be extended with mappings M»

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 17 / 57



Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M>
I extending mappings iM; with compatible mappings i,
Di erence: Mir Ms
I mappings inM; that cannot be extended with mappings M»
Union: M1 [ M2
I mappings inM1 plus mappings irM, (set theoretical union)

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 17 / 57



Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M
I extending mappings i1 with compatible mappings iM»
Di erence: Mir Ms
I mappings inM; that cannot be extended with mappings M»

Union: M1 [ M2
I mappings inM1 plus mappings irM, (set theoretical union)

De nition

Left Outer Join M1 X Mo = (M1 X M2) [ (M1r My)
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Semantics of SPARQL operators

Let M1 and M» be the result ofevaluatingP, and P».

De nition
The evaluation of:
(P1 AND P») |
(P1 UNIONPy) !
(P1 OPT Py) !
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Simple example

Example

(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)

((?X; name, %) OPT (?X; emall, E))
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Simple example

Example
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Simple example

((?X; name, %) OPT (?X; emalil, E))

Example
X| Y
R: | john
R, | paul

(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
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Boolean Iter expressions (value constraints)

In Iter expressions we consider:
I equality= among variables and RDF terms
I unary predicatebound
I boolean combinations’y, _, : )
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Satisfaction of value constraints

A mappingsatis es:
I ?X = cif it gives the valuec to variable X
I ?X =?Y if it gives the same value toX and %
I bound(?X) if it is de ned for ?X

De nition

Evaluation of P FILTER R): Set of mappings in the evaluation of
P that satisfyR.
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The evaluation problem

Input:
A mapping a graphpattern, and an RDFgraph

Question:
Is the mappingin the evaluation of thepattern against thegraph?
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Evaluation of simple patterns is polynomial

Theorem

For patterns using onhAND and FILTER operators AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern size of the graph
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Evaluation of simple patterns is polynomial

Theorem

For patterns using onhAND and FILTER operators AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern size of the graph

Proof idea
I Check that the mapping makes every triple to match.
I Then check that the mapping satis es thEILTERSs.
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Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete f&ND-FILTER-UNION
expressions.
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Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete f&ND-FILTER-UNION
expressions.

Proof idea
I Reduction from3SAT.
I . boundis used to encode negation.
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In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that includ®PT operator, the evaluation
problem is PSPACE-complete.
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In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that includ®PT operator, the evaluation
problem is PSPACE-complete.

Can we e ciently evaluate SPARQL queries in practice?

I We need to understand how the complexity depends on the
operators of SPARQL.
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A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P, UNION UNION Py,

where each Pis UNION{free.
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A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P, UNION UNION Py,

where each Pis UNION{free.

Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial fé&\ND-FILTER-UNION
expressions in the UNION normal form.
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PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.
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PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
I Reduction fromQBF: A pattern encodes a quanti ed
propositional formula

8%19y18x%29y»
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PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
I Reduction fromQBF: A pattern encodes a quanti ed
propositional formula

8%19y18x%29y»
I NestedOPTs are used to encode quanti er alternation.
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PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and ( such that o belongs to the answer of
P. overGi ' isvalid:

G

R
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We generateG, P and ( such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R : ((?X1=1_72Y1=0) ~ (?X1=0_?Y1=1))
P (((atv;?X1) AND (a;tv;?Y;)) FILTER R )
P. . (atrue ;?7Bg) OPT (P1 OPT (Q1 AND P ))
0
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PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and ( such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R : ((?X1=1_72Y1=0) ~ (?X1=0_?Y1=1))
P (((atv;?X1) AND (a;tv;?Y;)) FILTER R )
P. . (atrue ;?7Bg) OPT (P1 OPT (Q1 AND P ))

0 : f?Bo 7! 1g

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 28 /57



PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P ))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’
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PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P ))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

Bo 7! 1
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PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P ))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

P1

/ ?2X1 71 0
Bo 7! 1
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PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P ))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

P1 Q1

/ X170 —— X700 Y, 71i ?Bp7! 0
Bo 7! 1
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PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P ))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

P1 Q1

Xy 70— 22X 710 ?Y1 1 71i ?Bo7!' 0
Bo 7! 1

X171
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PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P ))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

P1 Q1

Xy 70— 22X 710 ?Y1 1 71i ?Bo7!' 0
Bo 7! 1

X171l —— X171 Y97 ) ?Bp7' 0O
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2B 2B

Is Bg giving optional information forP,?
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2B 2B

Is Bg giving optional information forP,?
I No, By is giving optional information for &; true ; ?Bg)?
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AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2Bo 2B

Is Bg giving optional information forP,?
I No, By is giving optional information for &; true ; ?Bg)?

These patterns rarely occur in practice.
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Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh

the pattern:
( ( A OPT B ) )

if a variable occurs
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De nition
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the pattern:

( ( A OPT B ) )

if a variable occursnsideB and anywhere outside the OPT
operator,
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Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

( ( A OPT B ) )

if a variable occursnsideB and anywhere outside the OPT
operator, then the variablemust also occur insidé.

Example

(?Y ; name, paul) OPT (X; email, Z) AND (?X; name, john)
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AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem isoNP-completefor well-designed
AND-FILTER-OPT patterns.
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AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem isoNP-completefor well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of thoem
P; UNION P, UNION UNION Py, where each Pis a
well-designedAND-FILTER-OPT pattern.
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AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem isoNP-completefor well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of thoem
P; UNION P, UNION UNION Py, where each Pis a
well-designedAND-FILTER-OPT pattern.

Can we use this in practice?
I Well-designed patterns are suitable for optimization.
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Classical optimization

I Classical optimization assumeslll{rejection.
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Classical optimization

I Classical optimization assumeslll{rejection.

i nul{rejection: the join/outer{join condition must fail h the
presence of nulls.
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Classical optimization

I Classical optimization assumeslll{rejection.

i nul{rejection: the join/outer{join condition must fail h the
presence of nulls.

I SPARQL operations areot null{rejecting.
I by de nition of compatible mappings.
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Well{designed graph patterns and optimization

Consider the following rules:

((P1 OPT P,) FILTERR) ! (P1 FILTERR) OPT P,) (1)

(P1 AND (P, OPT P3)) ! (P, AND P,) OPT P3)  (2)

(P, OPT P,) AND P3) ! (P, AND P3) OPT P,)  (3)
Proposition

If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), thenQ is a well-designed pattern
equivalent to P.
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Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQyq, :::, Qk such that:

P is constructed fromQy, :::, Qx by using only the OPT operator.
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Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQyq, :::, Qk such that:

P is constructed fromQy, :::, Qx by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a patternORPT
normal form.
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Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQyq, :::, Qk such that:

P is constructed fromQy, :::, Qx by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a patternORPT
normal form.

Patterns in OPT normal form can be evaluated more e ciently:

I AND-FILTER expressions are evaluated rst, and then theuks
are combined using the OPT operator.
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Outline

M. Arenas  {

RDF and RDFS: A brief introduction

SPARQL: A guery language for RDF

I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

NAV-SPARQL: A navigational query language for RDFS
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Querying RDFS data

I RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp ), subClassOfidf:sc ), domain (rdf:dom ), range

(rdfrrange ), type (rdf:type ).

I Evaluating queries which involve this vocabulary is
challenging.

I There is not yet consensus in the Semantic Web community
on how to de ne a query language for RDFS.
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A simple SPARQL quenfRonaldinhordf:type ; person)

rdf:dom - rdf:range

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccecplayer <—@—» soccerteam
C@ rdf:dom Py rdf:range
rdf:type rdf:type

) lays_in (o
Ronaldinho Pay Barcelona

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 38 /57
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SPARQL over RDFS

Checking whethen triple t is in a graphG is the basic step when
answering queries over RDF.

I For the case of RDFS, we need to check whethes implied byG.

The notion of entailment in RDFS can be de ned in terms of
classical notions such model, interpretation, etc.

I As for the case of rst-order logic.

This notion can also be characterized by a setiference rules.
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Entailment in RDFS

There are inference systems characterizing the notion dagment
in RDFS:

(p;rdf :sp;q) (& p;b)
(0;b)

(a;rdf :sc;b) (b;rdf :sc;c)
(a; rdf :sc;c)

Subproperty rules

Subclass rules

(p; rdf :domc) (&;p;b)
(a; rdf :type;c)

Typing rules
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SPARQL over RDFS: Closure of a graph

The closure of an RDFS grap8, denoted by clG), is the graph
obtained by adding taG all the triples that are implied byG.
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SPARQL over RDFS: Closure of a graph

The closure of an RDFS grap8, denoted by clG), is the graph
obtained by adding taG all the triples that are implied byG.

Basic step for answering queries over RDFS:
I Checking whether a tripe is in cl(G).
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SPARQL over RDFS: Closure of a graph

The closure of an RDFS grap8, denoted by clG), is the graph
obtained by adding taG all the triples that are implied byG.

Basic step for answering queries over RDFS:

I Checking whether a tripe is in cl(G).

De nition

The RDFS-evaluation of a graph pattern P over an RDFS graph G
is de ned as the evaluation dP over clG).

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 41 /57



Example:(Ronaldinhordfitype ; person)over the closure

/ \
rdf:sc | sportman \

rdf:sp
rdf:sc
/

rdf:dom rdf:range
/ \
/ rdf:sc
/

rdf:sc
‘ rdf:type
rdf:type :

/
{ soccetplayer F——‘,‘" plays.in b—» soccel
rdf:dom rdf:range
/
rdf:type

/
/

plays.in

!

Ronaldinho

rdf:type

Barcelona
lives_in

M. Arenas

{ SPARQL over RDF, and its possible extensions to RIFS

42/ 57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.
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M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 43 /57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.

This approach has some drawbacks:

I The size of the closure d& can be quadratic in the size d@b.

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 43 /57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.
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Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.

This approach has some drawbacks:
I The size of the closure d& can be quadratic in the size d@b.

I Once the closure has been computed, all the queries are atedu
over a graph which can be much larger than the original graph.

I The approach is not goal-oriented.

When evaluating §; rdf:sc ; b), a goal-oriented approach should
not compute cl@G):

I It should just verify whether there exists a path froaito b in
G where every edge has lahkelf:sc .
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Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.
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Our approach: Extend SPARQL with navigational capabiltie
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Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

This approach has some advantages:
I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPat
and XQuery). The results for these languages can be used. here
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Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

This approach has some advantages:
I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPat
and XQuery). The results for these languages can be used. here

I Navigational operators allow to express natural querieatthre not
expressible in SPARQL over RDFS.
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RDF and RDFS: A brief introduction

SPARQL: A guery language for RDF
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SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph
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Navigational axes

Forward axes for an RDF triplea(p; b):

f?‘,’,ge/;: . ode
Cnext

Backward axes for an RDF triplea(p; b):

edge? node’!
- -

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS
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A rst attempt: 0-NAV-SPARQL

Syntax of navigational expressions:

exp = self | self :a ] axis |

axis:a | exp=exp j expexp j exp

wherea 2 U and axis2 f next, next™, edge, edge?, node,
node?g.
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A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:
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A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg

Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg
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A rst attempt: 0-NAV-SPARQL
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A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg

Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg

Jedgeks = f(x;y)j9z2 U (x;y;z) 2 Gg
Jself aks = f(aa)g
Jnextaks = f(x;y)j(X;ay) 2 Gg
Jedgeaks = f(x;y)j(x;y;a) 2 Gg
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A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions

is de ned as follows:

Jself Kg
Jnext Ks
Jedgeks
Jself :akg
Jnext ;aks
Jedgeaks
Jexp;=exp, ke

f(x;x) jxisinGg

f(x;y) 1922 U (x;z;y) 2 Gg

f(x;y) 922 U (x;y;z) 2 Gg

f(a;a)09

f(x;y)j (x;ay) 2 Gg

f(x;y)j(x;y;d) 2 Gg

f(x;y) 9z (x;z) 2 Jexp ks and
(z;y) 2 JexpKsg
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A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions

is de ned as follows:

Jself Kg
Jnext Ks
Jedgeks
Jself :akg
Jnext ;aks
Jedgeaks
Jexp;=exp, ke

Jexpjexp ks

f(x;x) jxisinGg

f(x;y) 1922 U (x;z;y) 2 Gg

f(x;y) 1922 U (x;y;2) 2 Gg

f(aa)g

foxy)i(xay)2 Gg

f(x;y)i(xy;a) 2 Gg

f(x;y) 9z (x;z) 2 Jexp ks and
(z;y) 2 JexpKsg

Jexp ks [ Jexpks
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A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions

is de ned as follows:

Jself Kg
Jnext Ks
Jedgeks
Jself :akg
Jnext ;aks
Jedgeaks
Jexp;=exp, ke

Jexpjexp ks
Jexp Kg

f(x;x) jxisinGg

f(x;y) 1922 U (x;z;y) 2 Gg

f(x;y) 1922 U (x;y;2) 2 Gg

f(aa)g

foxy)i(xay)2 Gg

f(x;y)i(xy;a) 2 Gg

f(x;y) 9z (x;z) 2 Jexp ks and
(z;y) 2 JexpKsg

Jexp ks [ Jexpks

Jself kg [ Jexpks [ Jexpexpks |
Jexp=exp=expks [
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A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc )*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that
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I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc )*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

I The domain of isf?X;?Yg, and
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A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc )*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

I The domain of isf?X;?Yg, and

LX) (7Y) 2 Jexpks
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A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc )*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

I The domain of isf?X;?Yg, and

LX) (7Y) 2 Jexpks

Example: (?X; (next:lberia)"; ?Y) AND (?X; (next::AirFrance) ; ?Y)
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Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?
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Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

For every RDFS grape and SPARQL patterrP, we would like to
nd a 0-NAV-SPARQL patternQ such that:

| RDFS-evaluation oP overG = evaluation of Q overG.
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Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,
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Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even fer= (? X; a; ?Y ), wherea is
an arbitrary element irlJ.
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Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even fer= (? X; a; ?Y ), wherea is
an arbitrary element irlJ.

How can we capture SPARQL over RDFS?
I We adopt the notion of branching from XPath.
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A successful attempt: NAV-SPARQL

Syntax of navigational expressions:

exp = self | self :aj axis |
axis:a | axis:expl ] exp=exp j expexp | exp

wherea 2 U and axis2 f next, next™, edge, edge?, node,
node? g.
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A successful attempt: NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:
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A successful attempt: NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jnext:[expks = f(x;y)j9z;w2 U (x;z;y) 2 G and
(z;w) 2 Jexpksg
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A successful attempt: NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jnext ::[explks f(x;y)j9z;w 2 U (x;z;y) 2 G and
(z;w) 2 Jexpksg
f(x;y)j9z;w 2 U (x;y;z) 2 G and

(z;w) 2 Jexpksg

Jedge:[expks
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NAV-SPARQL: Capturing SPARQL over RDFS

Example: (X;a;?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X; next ::[(next ::(rdf:sp )) =(self ::a)];?Y).
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NAV-SPARQL: Capturing SPARQL over RDFS

Example: (X;a;?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X; next ::[(next ::(rdf:sp )) =(self ::a)];?Y).

Udf:sp @
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NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL patter
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,
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NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL patter
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace(?X; a; ?Y) by (?X; R(a); ?Y), where:

R(rdfisc ) = (next:(rdfisc ))*
R(rdf:isp ) = (next:(rdfisp ))*
R(b) = next:[(next:(rdf:isp )) =(self ::b)]
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NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL patter
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace(?X; a; ?Y) by (?X; R(a); ?Y), where:

R(rdfisc ) = (next:(rdfisc ))*
R(rdf:isp ) = (next:(rdfisp ))*
R(b) = next:[(next:(rdf:isp )) =(self ::b)]

Note: R(rdf:type ) usesnext, edge and node™.
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The extra expressive power of NAV-SPARQL

travel

rdf:sp

travel_train travel_bus

travel _ferry

rdf:sp rdf:sp rdf:sp

travel A travel B travel .C
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The extra expressive power of NAV-SPARQL

travel

rdf:sp

travel_train travel_bus

travel _ferry

rdf:sp rdf:sp rdf:sp

travel A travel B travel .C

A natural query: (?X; (next ::[(next ::(rdf:sp )) =(self :travel)])*; ?Y)

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 56 / 57



The extra expressive power of NAV-SPARQL

travel

rdf:sp

travel_train travel _ferry travel_bus
rdf:sp rdf:sp rdf:sp

travel A travel B travel .C
P

A natural query: (?X; (next ::[(next ::(rdf:sp )) =(self :travel)])*; ?Y)
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The extra expressive power of NAV-SPARQL

rdf:sp ////// rdf:sp

travel_train travel_ferry

rdf:sp rdf:sp rdf:sp

travel B travel .C
Pm—> London

travel_bus

\

\
\
\

A natural query: (?X; (next ::[(next ::(rdf:sp )) =(self :travel)])*; ?Y)
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The extra expressive power of NAV-SPARQL

rdf:sp //// rdf:sp

travel_bus

'\
\

travel_train

rdf:sp rdf:sp rdf:sp

travel_C
PM

A natural query: (?X; (next ::[(next ::(rdf:sp )) =(self :travel)])*; ?Y)
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The extra expressive power of NAV-SPARQL

rdf:sp// rdf:sp

travel_train

\\\\qf:sp

travel_bus

rdf:sp rdf:sp rdf:sp

PM

\

\
\
\

A natural query: (?X; (next ::[(next ::(rdf:sp )) =(self :travel)])*; ?Y)
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The extra expressive power of NAV-SPARQL

travel

rdf:sp /// rdf:sp \\\rdf:sp
rdf:sp rdf:sp rdf:sp

PM

A natural query: (?X; (next ::[(next ::(rdf:sp )) =(self :travel)])*; ?Y)
I This query cannot be expressed in SPARQL over RDFS.
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Ongoing work

I Implementation of SPARQL.
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Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e ciently? Can this
language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

I Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS? One level of nesting is enough to capture SPARQL
over RDFS.

M. Arenas  { SPARQL over RDF, and its possible extensions to ROFS 57 1 57



