M. Arenas

SPARQL over RDF, and its possible extensions to
RDFS

Marcelo Arenas

Department of Computer Science
Ponti cia Universidad Cablica de Chile
&

Center for Web Research
Universidad de Chile

{ SPARQL over RDF, and its possible extensions to RIFS 1/57

Outline

M. Arenas {

RDF and RDFS: A brief introduction

SPARQL: A guery language for RDF

I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

NAV-SPARQL: A navigational query language for RDFS

SPARQL over RDF, and its possible extensions to RIFS

2/57

Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF

I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Rerez.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 2157

Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Rerez.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 3/57

RDF in a nutshell

I RDF is the W3C proposal framework for representing
information in the Web.

I Abstract syntax based on directed labeled graph.

I Schema de nition languageRDFS): De ne new vocabulary
(typing, inheritance of classes and properties).

I Formal semantics.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 457

RDF formal model

U
A
oo | Predicate U = setof Uris
B = set of Blank nodes
JE JEEEERN L = set of Literals
U B U B L

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 5/57

RDF formal model

U
4
oo | Predicate U = setof Uris
B = set of Blank nodes
> o FOE TN L = set of Literals
U B U B L

(s;p;0)2 (U B) U (U[B[L)is called anRDF triple

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 5/57

RDF formal model

U
4
oo | Predicate U = setof Uris
B = set of Blank nodes
> o FOE TN L = set of Literals
U B U B L

(s;p;0)2 (U B) U (U[B[L)is called anRDF triple

A set of RDF triples is called aRDF graph

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

5/57

RDF: An example

rdf:dom ; rdf:range

M. Arenas

rdf:sc

sportman

rdf:sc

rdf:sp

rdf:sc

soccecplayer <—@—» soccerteam
T rdf:range

rdf:type
[/ Ronaldinho

|
)

df:dom

plays.in

livesin ———_

{ SPARQL over RDF, and its possible extensions to RIFS

(
L

rdf:type

Barcelona ‘

6 /57

Outline

M. Arenas {

RDF and RDFS: A brief introduction

SPARQL: A guery language for RDF

I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

NAV-SPARQL: A navigational query language for RDFS

SPARQL over RDF, and its possible extensions to RIFS 7157

Querying RDF: SPARQL

I SPARQL is the W3C candidate recommendation query
language for RDF.

I SPARQL is a graph-matching query language.

I A SPARQL query consists of three parts:

I Pattern matching: optional, union, nesting, ltering.
I Solution modi ers: projection, distinct, order, limit, oset.
I Qutput part: construction of new triples;: .

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 8/57

A simple RDF query language

SELECT ?Name

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 9/57

A simple RDF query language

SELECT ?Name
WHERE

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 9/57

A simple RDF query language

SELECT ?Name
WHERE

{

?X :name ?Name

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 9/57

A simple RDF query language

SELECT ?Name ?Email
WHERE
{

?X :name ?Name

?X :email ?Email

}

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 9/57

A simple RDF query language

SELECT ?Name ?Email
WHERE

{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H

I Head: processing of some variables.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 9/57

A simple RDF query language

SELECT ?Name ?Email
WHERE

{

?X :name ?Name
?X :email ?Email

}
In general, in a query we have:

H P

I Head: processing of some variables.

I Body: pattern matching expression.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

9/57

A simple RDF query language

SELECT ?Name ?Email
WHERE

{

?X :name ?Name
?X :email ?Email

}
In general, in a query we have:

H P

I Head: processing of some variables.

I Body: pattern matching expression.

We focus onP.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

9/57

But things can become more complex ...

{P1
Interesting features of pattern P2}
matching on graphs

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 10/ 57

But things can become more complex ...

{{P1
Interesting features of pattern P2}
matching on graphs
I Grouping (P3
P4}
}

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 10/ 57

But things can become more complex ...

{{P1

Interesting features of pattern P2
matching on graphs OPTIONAK P5 } }

I Grouping [P3

I Optional parts P4

OPTIONAK P7 } }

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 10/ 57

But things can become more complex ...

{{P1
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
I Grouping (P3
I Optional parts P4
I Nesting OPTIONAK P7

OPTIONAK P8 } } }

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 10/ 57

But things can become more complex ...

{{P1
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
I Grouping (P3
I Optional parts P4
I Nesting OPTIONAL { P7
_ OPTIONAL { P8} 1} }
I Union of patterns }
UNION
{ P9}

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 10/ 57

But things can become more complex ...

{{P1
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
I Grouping (P3
I Optional parts P4
I Nesting OPTIONAL { P7
. OPTIONAL { P8} } }
I Union of patterns }
I Filtering UNION
{ P9
FILTER(R) }

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 10/ 57

A formal semantics for SPARQL

A formal approach would be bene cial for:
I Clarifying corner cases
I Helping in the implementation process
I Providing sound foundations

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 11 /57

A formal semantics for SPARQL

A formal approach would be bene cial for:
I Clarifying corner cases
I Helping in the implementation process
I Providing sound foundations

In this presentation:
I A formal compositional semantics for SPARQL
I A study of the complexity of evaluating SPARQL
I Optimization procedures

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 11 /57

A standard algebraic syntax

I Triple patterns: just triples + variablesyithout blanks
?X :name "john" (?X; name, john)

I Graph patterns: full parenthesized algebra

{ PL P2} (P1 AND P;)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1} UNION { P2} (P1 UNION P2)

{ PLFILTER (R)} (P; FILTERR)
original SPARQL syntax algebraic syntax

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

12 /57

A standard algebraic syntax

I Explicit precedence/association

Example

{t1
2

OPTIONAL { t3 }
OPTIONAL { t4 }
t5

((((t1 AND ty) OPT t3) OPT t4) AND ts)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

13 /57

Mappings: building block for the semantics

De nition
A mapping is apartial function from variables to RDF terms.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 14 / 57

Mappings: building block for the semantics

De nition
A mapping is apartial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 14 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition
The evaluationof t is the set of mappings that

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

15/ 57

The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition
The evaluationof t is the set of mappings that
I maket to match the graph

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 15/ 57

The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition

The evaluationof t is the set of mappings that
I maket to match the graph
I have as domain the variables in

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 15/ 57

The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition

The evaluationof t is the set of mappings that
I maket to match the graph
I have as domain the variables in

Example
graph triple evaluation
(R1; name, john) XY
(Ry; email, J@ed.ex) (?X; name, %) 1: | Ry | john
(R2; name, paul) 2. | Rz | paul

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 15/ 57

The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition

The evaluationof t is the set of mappings that
I maket to match the graph
I have as domain the variables in

Example
graph triple evaluation
(Ry; name, john) XY
(Ry; email, J@ed.ex) (?X; name,?Y) 1: | Ry | john
(R2; name, paul) 2. | Rz | paul

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 15/ 57

The semantics of triple patterns

Given an RDF graph and a triple pattetn

De nition

The evaluationof t is the set of mappings that
I maket to match the graph
I have as domain the variables in

Example
graph triple evaluation
(R1; name, john) XY
(Ry; email, J@ed.ex) (?X; name,?Y) 1: | Ry | john
(R2; name, paul) 2. | Ro | paul

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 15/ 57

Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
R; | john
R1 J@edu.ex
P@edu.ex R,

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 16 / 57

Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
R:1 | john
R1 J@edu.ex
P@edu.ex R,

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 16 / 57

Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
1: | Ry | john
2 | Re J@edu.ex
3: P@edu.ex R,
1[2: | Ry | john| J@edu.exX

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 16 / 57

Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
1: | Ry | john
2 | R J@edu.ex
3 P@edu.ex R,
1[2: | Ry | john| J@edu.exX

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 16 / 57

Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY ??Z N
1: | Ry | john
2. | Ry J@edu.ex
3 P@edu.ex R,
1] 2: | Ry | john| J@edu.ex
1l 3: | Rt |john | P@edu.ex Ry

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

16 / 57

Compatible mappings

De nition
Two mappings arecompatibleif they agreein their shared
variables.
Example
XY A N
1: | Ry | john
2. | Ry J@edu.ex
3 P@edu.ex R,
1] 2: | Ry | john| J@edu.ex
1l 3: | Rt |john | P@edu.ex Ry

I o, and 3 are not compatible

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

16 / 57

Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 17 / 57

Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M>
I extending mappings iM; with compatible mappings i,

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 17 / 57

Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M
I extending mappings i1 with compatible mappings iM»
Di erence: Mir Ms
I mappings inM; that cannot be extended with mappings M»

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 17 / 57

Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M>
I extending mappings iM; with compatible mappings i,
Di erence: Mir Ms
I mappings inM; that cannot be extended with mappings M»
Union: M1 [M2
I mappings inM1 plus mappings irM, (set theoretical union)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 17 / 57

Sets of mappings and operations

Let M1 and M» be sets of mappings:

De nition
Join: M1 X M
I extending mappings i1 with compatible mappings iM»
Di erence: Mir Ms
I mappings inM; that cannot be extended with mappings M»

Union: M1 [M2
I mappings inM1 plus mappings irM, (set theoretical union)

De nition

Left Outer Join M1 X Mo = (M1 X M2) [(M1r My)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

17 /57

Semantics of SPARQL operators

Let M1 and M» be the result ofevaluatingP, and P».

De nition
The evaluation of:
(P1 AND P») |
(P1 UNIONPy) !
(P1 OPT Py) !

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 18 /57

Semantics of SPARQL operators

Let M1 and M» be the result ofevaluatingP, and P».

De nition
The evaluation of:
(Pl AND Pz) | M1 X M2
(P1 UNIONPy) !
(P1 OPT Py) !

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 18 /57

Semantics of SPARQL operators

Let M1 and M» be the result ofevaluatingP, and P».

De nition
The evaluation of:
(P1 AND P») | M1 X My
(P17 UNION Py) | M1 [M;
(P1 OPT Py) !

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 18 /57

Semantics of SPARQL operators

Let M1 and M» be the result ofevaluatingP, and P».

De nition
The evaluation of:
(Pl AND Pz) | M1 X M2
(P1 UNIONPy) ! Mi[My
(P1 OPT Py) ! M; X M>

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 18 /57

Simple example

Example

(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)

((?X; name, %) OPT (?X; emall, E))

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 19 /57

Simple example

Example

(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)

((?X; name, %) OPT (?X; emall, E))

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 19 /57

Simple example

Example
(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
((?X; name, %) OPT (?X; emall, E))

XY

R: | john

R, | paul

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 19 /57

Simple example

Example
(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
((?X; name, %) OPT (?X; email, E))

XY

R: | john

R, | paul

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 19 /57

Simple example

((?X; name, %) OPT (?X; emalil, E))

Example
X| Y
R: | john
R, | paul

(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

X

?E

Ry

J@ed.ex

19 /57

Simple example

((?X; name, %) OPT (?X; emall, E))

Example
X| Y
R: | john
R, | paul

(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

X

?E

Ry

J@ed.ex

19 /57

Simple example

Example
(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
((?X; name, %) OPT (?X; emall, E))

XY X | ?Y ?E

R: | john

R, | paul

X

?E

Ry

J@ed.ex

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

19 /57

Simple example

Example
(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
((?X; name, %) OPT (?X; emall, E))

XY X | ?Y ?E

R: | john R: | john | J@ed.eX

R, | paul

X

?E

Ry

J@ed.ex

I from the Join

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

19 /57

Simple example

Example
(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
((?X; name, %) OPT (?X; emall, E))

XY X | ?Y ?E

R: | john

R, | paul R, | paul

X

?E

Ry

J@ed.ex

I from the Di erence

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

19 /57

Simple example

Example
(R1; name, john)
(Ry; email, J@ed.ex)
(R2; name, paul)
((?X; name, %) OPT (?X; emall, E))

XY X | ?Y ?E

R: | john R: | john | J@ed.eX

R, | paul R, | paul

X

?E

Ry

J@ed.ex

I from the Union

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

19 /57

Boolean Iter expressions (value constraints)

In Iter expressions we consider:
I equality= among variables and RDF terms
I unary predicatebound
I boolean combinations’y, _, :)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 20/ 57

Satisfaction of value constraints

A mappingsatis es:
I ?X = cif it gives the valuec to variable X
I ?X =?Y if it gives the same value toX and %
I bound(?X) if it is de ned for ?X

De nition

Evaluation of P FILTER R): Set of mappings in the evaluation of
P that satisfyR.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 21/57

The evaluation problem

Input:
A mapping a graphpattern, and an RDFgraph

Question:
Is the mappingin the evaluation of thepattern against thegraph?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 22 /57

Evaluation of simple patterns is polynomial

Theorem

For patterns using onhAND and FILTER operators AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern size of the graph

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 23 /57

Evaluation of simple patterns is polynomial

Theorem

For patterns using onhAND and FILTER operators AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern size of the graph

Proof idea
I Check that the mapping makes every triple to match.
I Then check that the mapping satis es thEILTERSs.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 23 /57

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete f&ND-FILTER-UNION
expressions.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 24| 57

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete f&ND-FILTER-UNION
expressions.

Proof idea
I Reduction from3SAT.
I . boundis used to encode negation.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 24| 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that includ®PT operator, the evaluation
problem is PSPACE-complete.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 25 /57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that includ®PT operator, the evaluation
problem is PSPACE-complete.

Can we e ciently evaluate SPARQL queries in practice?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 25 /57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that includ®PT operator, the evaluation
problem is PSPACE-complete.

Can we e ciently evaluate SPARQL queries in practice?

I We need to understand how the complexity depends on the
operators of SPARQL.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 25 /57

A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P, UNION UNION Py,

where each Pis UNION{free.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 26/ 57

A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P, UNION UNION Py,

where each Pis UNION{free.

Graph pattern expressions are usually in this normal form.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 26/ 57

A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P, UNION UNION Py,

where each Pis UNION{free.

Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial fé&\ND-FILTER-UNION
expressions in the UNION normal form.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 26/ 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 27157

PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
I Reduction fromQBF: A pattern encodes a quanti ed
propositional formula

8%19y18x%29y»

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 27157

PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
I Reduction fromQBF: A pattern encodes a quanti ed
propositional formula

8%19y18x%29y»
I NestedOPTs are used to encode quanti er alternation.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 27157

PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and (such that o belongs to the answer of
P. overGi ' isvalid:

G

R

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 28 /57

PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and (such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R
P
P.
0

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 28 /57

PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and (such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R : ((?X1=1_72Y1=0) ~ (?X1=0_?Y1=1))
P
P.
0

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 28 /57

PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and (such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R : ((?X1=1_72Y1=0) ~ (?X1=0_?Y1=1))
P (((atv;?X1) AND (a;tv;?Y;)) FILTER R)
P.
0

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 28 /57

PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and (such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R : ((?X1=1_72Y1=0) ~ (?X1=0_?Y1=1))
P (((atv;?X1) AND (a;tv;?Y;)) FILTER R)
P. . (atrue ;?7Bg) OPT (P1 OPT (Q1 AND P))
0

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 28 /57

PSPACE-hardness: A closer look

Assume = 8x19y; ,where =(x¢_: yi)” (: X1 _ Y1).

We generateG, P and (such that o belongs to the answer of

P overGi ' isvalid:
G . f(atv;0); (atv;1); (afalse ;0); (atrue ;1)g
R : ((?X1=1_72Y1=0) ~ (?X1=0_?Y1=1))
P (((atv;?X1) AND (a;tv;?Y;)) FILTER R)
P. . (atrue ;?7Bg) OPT (P1 OPT (Q1 AND P))

0 : f?Bo 7! 1g

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 28 /57

PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

29 /57

PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

Bo 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 29/ 57

PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

P1

/ ?2X1 71 0
Bo 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 29/ 57

PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

P1 Q1

/ X170 —— X700 Y, 71i ?Bp7! 0
Bo 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 29/ 57

PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

’

P1 Q1

Xy 70— 22X 710 ?Y1 1 71i ?Bo7!' 0
Bo 7! 1

X171

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 29/ 57

PSPACE-hardness: A closer look

8x19y1 (X1 _ > y1) N (0 X1 _ Y1)

P (((atv;?X1) AND (a;tv;?Yq)) FILTER

((?Xl =1 _ ?Yl = O) N (?Xl =0 _ ?Yl = 1)))
P (atrue ;?Bg) OPT (P1 OPT (Q1 AND P))
Pi1 : (atv;?X1)

Q1 : (atv;?X1) AND (a;tv;?Y1) AND (a;false ;7Bg)

P1 Q1

Xy 70— 22X 710 ?Y1 1 71i ?Bo7!' 0
Bo 7! 1

X171l —— X171 Y97) ?Bp7' 0O

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 29/ 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1

2Bo

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11}

2Bo 2B

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2Bo 2B

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2B 2B

Is Bg giving optional information forP,?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2B 2B

Is Bg giving optional information forP,?
I No, By is giving optional information for &; true ; ?Bg)?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a;true ;?Bg) OPT (Py OPT (Q: AND P))
1 11} 1

2Bo 2B

Is Bg giving optional information forP,?
I No, By is giving optional information for &; true ; ?Bg)?

These patterns rarely occur in practice.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 30 /57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh

the pattern:
((A OPT B))

if a variable occurs

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh

the pattern:
((A OPT B))

if a variable occursnsideB

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

((A OPT B))

if a variable occursnsideB and anywhere outside the OPT
operator,

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

((A OPT B))

if a variable occursnsideB and anywhere outside the OPT
operator, then the variablemust also occur insidé.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

((A OPT B))

if a variable occursnsideB and anywhere outside the OPT
operator, then the variablemust also occur insidé.

Example

(?Y ; name, paul) OPT (X; email, Z) AND (?X; name, john)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

((A OPT B))

if a variable occursnsideB and anywhere outside the OPT
operator, then the variablemust also occur insidé.

Example

(?Y ; name, paul) OPT X; email, Z) AND (?X; name, john)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

((A OPT B))

if a variable occursnsideB and anywhere outside the OPT
operator, then the variablemust also occur insidé.

Example

(?Y ; name, paul) OPT X; email, Z) AND (?X; name, john)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

Well{designed patterns

De nition
An AND-FILTER-OPT pattern is well{designed if for every OPRh
the pattern:

((A OPT B))

if a variable occursnsideB and anywhere outside the OPT
operator, then the variablemust also occur insidé.

Example

(?Y ; name, paul) OPT X; email, Z) AND (?X; name, john)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 31/57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem isoNP-completefor well-designed
AND-FILTER-OPT patterns.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 32 /57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem isoNP-completefor well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of thoem
P; UNION P, UNION UNION Py, where each Pis a
well-designedAND-FILTER-OPT pattern.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 32 /57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem isoNP-completefor well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of thoem
P; UNION P, UNION UNION Py, where each Pis a
well-designedAND-FILTER-OPT pattern.

Can we use this in practice?
I Well-designed patterns are suitable for optimization.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 32 /57

Classical optimization

I Classical optimization assumeslll{rejection.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 33/57

Classical optimization

I Classical optimization assumeslll{rejection.

i nul{rejection: the join/outer{join condition must fail h the
presence of nulls.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 33/57

Classical optimization

I Classical optimization assumeslll{rejection.

i nul{rejection: the join/outer{join condition must fail h the
presence of nulls.

I SPARQL operations areot null{rejecting.
I by de nition of compatible mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 33/57

Well{designed graph patterns and optimization

Consider the following rules:

((P1 OPT P,) FILTERR) ! (P1 FILTERR) OPT P,) (1)

(P1 AND (P, OPT P3)) ! (P, AND P,) OPT P3) (2)

(P, OPT P,) AND P3) ! (P, AND P3) OPT P,) (3)
Proposition

If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), thenQ is a well-designed pattern
equivalent to P.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 34 /57

Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQyq, :::, Qk such that:

P is constructed fromQy, :::, Qx by using only the OPT operator.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 35/57

Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQyq, :::, Qk such that:

P is constructed fromQy, :::, Qx by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a patternORPT
normal form.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 35/57

Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQyq, :::, Qk such that:

P is constructed fromQy, :::, Qx by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a patternORPT
normal form.

Patterns in OPT normal form can be evaluated more e ciently:

I AND-FILTER expressions are evaluated rst, and then theuks
are combined using the OPT operator.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 35/57

Outline

M. Arenas {

RDF and RDFS: A brief introduction

SPARQL: A guery language for RDF

I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

NAV-SPARQL: A navigational query language for RDFS

SPARQL over RDF, and its possible extensions to RIFS 36 /57

Querying RDFS data

I RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOfidf:sc), domain (rdf:dom), range

(rdfrrange), type (rdf:type).

I Evaluating queries which involve this vocabulary is
challenging.

I There is not yet consensus in the Semantic Web community
on how to de ne a query language for RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 37157

A simple SPARQL quenfRonaldinhordf:type ; person)

rdf:dom - rdf:range

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccecplayer <—@—» soccerteam
C@ rdf:dom Py rdf:range
rdf:type rdf:type

) lays_in (o
Ronaldinho Pay Barcelona

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 38 /57

lives.in

SPARQL over RDFS

Checking whethen triple t is in a graphG is the basic step when
answering queries over RDF.

I For the case of RDFS, we need to check whethes implied byG.

The notion of entailment in RDFS can be de ned in terms of
classical notions such model, interpretation, etc.

I As for the case of rst-order logic.

This notion can also be characterized by a setiference rules.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 39/57

Entailment in RDFS

There are inference systems characterizing the notion dagment
in RDFS:

(p;rdf :sp;q) (& p;b)
(0;b)

(a;rdf :sc;b) (b;rdf :sc;c)
(a; rdf :sc;c)

Subproperty rules

Subclass rules

(p; rdf :domc) (&;p;b)
(a; rdf :type;c)

Typing rules

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 40 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS grap8, denoted by clG), is the graph
obtained by adding taG all the triples that are implied byG.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 41 /57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS grap8, denoted by clG), is the graph
obtained by adding taG all the triples that are implied byG.

Basic step for answering queries over RDFS:
I Checking whether a tripe is in cl(G).

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 41 /57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS grap8, denoted by clG), is the graph
obtained by adding taG all the triples that are implied byG.

Basic step for answering queries over RDFS:

I Checking whether a tripe is in cl(G).

De nition

The RDFS-evaluation of a graph pattern P over an RDFS graph G
is de ned as the evaluation dP over clG).

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 41 /57

Example:(Ronaldinhordfitype ; person)over the closure

/ \
rdf:sc | sportman \

rdf:sp
rdf:sc
/

rdf:dom rdf:range
/ \
/ rdf:sc
/

rdf:sc
‘ rdf:type
rdf:type :

/
{ soccetplayer F——‘,‘" plays.in b—» soccel
rdf:dom rdf:range
/
rdf:type

/
/

plays.in

!

Ronaldinho

rdf:type

Barcelona
lives_in

M. Arenas

{ SPARQL over RDF, and its possible extensions to RIFS

42/ 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 43 /57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:
I Compute cl@G), and then evaluateP over clG) as for RDF.

This approach has some drawbacks:

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 43 /57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.

This approach has some drawbacks:

I The size of the closure d& can be quadratic in the size d@b.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 43 /57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.

This approach has some drawbacks:
I The size of the closure d& can be quadratic in the size d@b.

I Once the closure has been computed, all the queries are atedu
over a graph which can be much larger than the original graph.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

43 /57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL quérover an
RDFS graphG:

I Compute cl@G), and then evaluateP over clG) as for RDF.

This approach has some drawbacks:
I The size of the closure d& can be quadratic in the size d@b.

I Once the closure has been computed, all the queries are atedu
over a graph which can be much larger than the original graph.

I The approach is not goal-oriented.

When evaluating §; rdf:sc ; b), a goal-oriented approach should
not compute cl@G):

I It should just verify whether there exists a path froaito b in
G where every edge has lahkelf:sc .

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 43 /57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

This approach has some advantages:

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

This approach has some advantages:
I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPat
and XQuery). The results for these languages can be used. here

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Extending SPARQL with navigational capabilities

The example §; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabiltie

I A queryP over an RDFS grapl® is answered by navigatinG
(cl(G) is not computed).

This approach has some advantages:
I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPat
and XQuery). The results for these languages can be used. here

I Navigational operators allow to express natural querieatthre not
expressible in SPARQL over RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 44 | 57

Outline

M. Arenas {

RDF and RDFS: A brief introduction

SPARQL: A guery language for RDF

I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

NAV-SPARQL: A navigational query language for RDFS

SPARQL over RDF, and its possible extensions to RIFS

45/ 57

Navigational axes

Forward axes for an RDF triplea(p; b):

f?‘,’,ge/;: . ode
Cnext

Backward axes for an RDF triplea(p; b):

edge? node’!
- -

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

46 / 57

A rst attempt: 0-NAV-SPARQL

Syntax of navigational expressions:

exp = self | self :a] axis |

axis:a | exp=exp j expexp j exp

wherea 2 U and axis2 f next, next™, edge, edge?, node,
node?g.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 47 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg

Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg
Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg
Jedgeks = f(X;y)j9z2 U (x;y;z) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg

Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg

Jedgeks = f(x;y)j9z2 U (x;y;z) 2 Gg
Jself aks = f(aa)g

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg
Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg
Jedgeks = f(x;y)j9z2 U (x;y;z) 2 Gg
Jself aks = f(aa)g
Jnextaks = f(x;y)j(X;ay) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jself ks = f(x;x)]jxisinGg

Jnextks = f(x;y)j9z2 U (x;z;y) 2 Gg

Jedgeks = f(x;y)j9z2 U (x;y;z) 2 Gg
Jself aks = f(aa)g
Jnextaks = f(x;y)j(X;ay) 2 Gg
Jedgeaks = f(x;y)j(x;y;a) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 48 | 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions

is de ned as follows:

Jself Kg
Jnext Ks
Jedgeks
Jself :akg
Jnext ;aks
Jedgeaks
Jexp;=exp, ke

f(x;x) jxisinGg

f(x;y) 1922 U (x;z;y) 2 Gg

f(x;y) 922 U (x;y;z) 2 Gg

f(a;a)09

f(x;y)j (x;ay) 2 Gg

f(x;y)j(x;y;d) 2 Gg

f(x;y) 9z (x;z) 2 Jexp ks and
(z;y) 2 JexpKsg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

48 / 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions

is de ned as follows:

Jself Kg
Jnext Ks
Jedgeks
Jself :akg
Jnext ;aks
Jedgeaks
Jexp;=exp, ke

Jexpjexp ks

f(x;x) jxisinGg

f(x;y) 1922 U (x;z;y) 2 Gg

f(x;y) 1922 U (x;y;2) 2 Gg

f(aa)g

foxy)i(xay)2 Gg

f(x;y)i(xy;a) 2 Gg

f(x;y) 9z (x;z) 2 Jexp ks and
(z;y) 2 JexpKsg

Jexp ks [Jexpks

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

48 / 57

A rst attempt: 0-NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions

is de ned as follows:

Jself Kg
Jnext Ks
Jedgeks
Jself :akg
Jnext ;aks
Jedgeaks
Jexp;=exp, ke

Jexpjexp ks
Jexp Kg

f(x;x) jxisinGg

f(x;y) 1922 U (x;z;y) 2 Gg

f(x;y) 1922 U (x;y;2) 2 Gg

f(aa)g

foxy)i(xay)2 Gg

f(x;y)i(xy;a) 2 Gg

f(x;y) 9z (x;z) 2 Jexp ks and
(z;y) 2 JexpKsg

Jexp ks [Jexpks

Jself kg [Jexpks [Jexpexpks |
Jexp=exp=expks [

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

48 / 57

A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc)*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 49 /| 57

A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc)*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

I The domain of isf?X;?Yg, and

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 49 /| 57

A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc)*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

I The domain of isf?X;?Yg, and

LX) (7Y) 2 Jexpks

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 49 /| 57

A rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp;y), where exp is a navigational expression.

I Examples: (Ronaldinhaext ::lives _in; Spain) and
(?X; (next:(rdf:isc)*; ?Y).

Semantics of 0-NAV-SPARQL: The evaluation b (? X; exp; ?Y)
over an RDFS graplt is the set of mappings such that

I The domain of isf?X;?Yg, and

LX) (7Y) 2 Jexpks

Example: (?X; (next:lberia)"; ?Y) AND (?X; (next::AirFrance) ; ?Y)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 49 /| 57

Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 50 / 57

Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
I Can we capture SPARQL over RDFS?

For every RDFS grape and SPARQL patterrP, we would like to
nd a 0-NAV-SPARQL patternQ such that:

| RDFS-evaluation oP overG = evaluation of Q overG.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 50 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 51 /57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even fer= (? X; a; ?Y), wherea is
an arbitrary element irlJ.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 51 /57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even fer= (? X; a; ?Y), wherea is
an arbitrary element irlJ.

How can we capture SPARQL over RDFS?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 51 /57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even fer= (? X; a; ?Y), wherea is
an arbitrary element irlJ.

How can we capture SPARQL over RDFS?
I We adopt the notion of branching from XPath.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 51 /57

A successful attempt: NAV-SPARQL

Syntax of navigational expressions:

exp = self | self :aj axis |
axis:a | axis:expl] exp=exp j expexp | exp

wherea 2 U and axis2 f next, next™, edge, edge?, node,
node? g.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 52 /57

A successful attempt: NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 53 /57

A successful attempt: NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jnext:[expks = f(x;y)j9z;w2 U (x;z;y) 2 G and
(z;w) 2 Jexpksg

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 53 /57

A successful attempt: NAV-SPARQL

Given an RDFS grapls, the semantics of navigational expressions
is de ned as follows:

Jnext ::[explks f(x;y)j9z;w 2 U (x;z;y) 2 G and
(z;w) 2 Jexpksg
f(x;y)j9z;w 2 U (x;y;z) 2 G and

(z;w) 2 Jexpksg

Jedge:[expks

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 53 /57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (X;a;?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X; next ::[(next ::(rdf:sp)) =(self ::a)];?Y).

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 54 | 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (X;a;?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X; next ::[(next ::(rdf:sp)) =(self ::a)];?Y).

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 54 | 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (X;a;?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X; next ::[(next ::(rdf:sp)) =(self ::a)];?Y).

Udf:sp @

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 54 | 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL patter
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 55/ 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL patter
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace(?X; a; ?Y) by (?X; R(a); ?Y), where:

R(rdfisc) = (next:(rdfisc))*
R(rdf:isp) = (next:(rdfisp))*
R(b) = next:[(next:(rdf:isp)) =(self ::b)]

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 55/ 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL patter
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace(?X; a; ?Y) by (?X; R(a); ?Y), where:

R(rdfisc) = (next:(rdfisc))*
R(rdf:isp) = (next:(rdfisp))*
R(b) = next:[(next:(rdf:isp)) =(self ::b)]

Note: R(rdf:type) usesnext, edge and node™.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 55/ 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp

travel_train travel_bus

travel _ferry

rdf:sp rdf:sp rdf:sp

travel A travel B travel .C

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp

travel_train travel_bus

travel _ferry

rdf:sp rdf:sp rdf:sp

travel A travel B travel .C

A natural query: (?X; (next ::[(next ::(rdf:sp)) =(self :travel)])*; ?Y)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp

travel_train travel _ferry travel_bus
rdf:sp rdf:sp rdf:sp

travel A travel B travel .C
P

A natural query: (?X; (next ::[(next ::(rdf:sp)) =(self :travel)])*; ?Y)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf:sp ////// rdf:sp

travel_train travel_ferry

rdf:sp rdf:sp rdf:sp

travel B travel .C
Pm—> London

travel_bus

\

\
\
\

A natural query: (?X; (next ::[(next ::(rdf:sp)) =(self :travel)])*; ?Y)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf:sp //// rdf:sp

travel_bus

'\
\

travel_train

rdf:sp rdf:sp rdf:sp

travel_C
PM

A natural query: (?X; (next ::[(next ::(rdf:sp)) =(self :travel)])*; ?Y)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf:sp// rdf:sp

travel_train

\\\\qf:sp

travel_bus

rdf:sp rdf:sp rdf:sp

PM

\

\
\
\

A natural query: (?X; (next ::[(next ::(rdf:sp)) =(self :travel)])*; ?Y)

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp /// rdf:sp \\\rdf:sp
rdf:sp rdf:sp rdf:sp

PM

A natural query: (?X; (next ::[(next ::(rdf:sp)) =(self :travel)])*; ?Y)
I This query cannot be expressed in SPARQL over RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 56 / 57

Do

]
|||||
U

Ongoing work

I Implementation of SPARQL.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e ciently?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.

I Can this language be implemented e ciently? Can this
language be used over large RDFS graphs?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.

I Can this language be implemented e ciently? Can this
language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS

57 /57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.

I Can this language be implemented e ciently? Can this
language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

I Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS?

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e ciently? Can this
language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

I Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS? One level of nesting is enough to capture SPARQL
over RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to ROFS 57 1 57

