
SPARQL over RDF, and its possible extensions to
RDFS

Marcelo Arenas

Department of Computer Science
Ponti�cia Universidad Cat�olica de Chile

&
Center for Web Research

Universidad de Chile

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 1 / 57



Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 2 / 57



Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge P�erez.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 2 / 57



Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge P�erez.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 3 / 57



RDF in a nutshell

I RDF is the W3C proposal framework for representing
information in the Web.

I Abstract syntax based on directed labeled graph.

I Schema de�nition language (RDFS): De�ne new vocabulary
(typing, inheritance of classes and properties).

I Formal semantics.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 4 / 57



RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 5 / 57



RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s; p; o) 2 (U [ B) � U � (U [ B [ L) is called anRDF triple

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 5 / 57



RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s; p; o) 2 (U [ B) � U � (U [ B [ L) is called anRDF triple

A set of RDF triples is called anRDF graph

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 5 / 57



RDF: An example

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spain

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 6 / 57



Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 7 / 57



Querying RDF: SPARQL

I SPARQL is the W3C candidate recommendation query
language for RDF.

I SPARQL is a graph-matching query language.

I A SPARQL query consists of three parts:
I Pattern matching: optional, union, nesting, �ltering.
I Solution modi�ers: projection, distinct, order, limit, o�set.
I Output part: construction of new triples,: : :.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 8 / 57



A simple RDF query language

SELECT ?Name?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



A simple RDF query language

SELECT ?Name?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



A simple RDF query language

SELECT ?Name?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



A simple RDF query language

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



A simple RDF query language

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H  

I Head: processing of some variables.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



A simple RDF query language

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H  P

I Head: processing of some variables.
I Body: pattern matching expression.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



A simple RDF query language

SELECT ?Name ?Email
WHERE
{

?X :name ?Name
?X :email ?Email

}

In general, in a query we have:

H  P

I Head: processing of some variables.
I Body: pattern matching expression.

We focus onP.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 9 / 57



But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ P1
P2 }

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 10 / 57



But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2 }

{ P3
P4 }

}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 10 / 57



But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL{ P5 } }

{ P3
P4
OPTIONAL{ P7 } }

}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 10 / 57



But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL { P5 } }

{ P3
P4
OPTIONAL{ P7

OPTIONAL{ P8 } } }
}

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 10 / 57



But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL { P5 } }

{ P3
P4
OPTIONAL { P7

OPTIONAL { P8 } } }
}
UNION
{ P9 }

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 10 / 57



But things can become more complex ...

Interesting features of pattern
matching on graphs

I Grouping
I Optional parts
I Nesting
I Union of patterns
I Filtering

{ { P1
P2
OPTIONAL { P5 } }

{ P3
P4
OPTIONAL { P7

OPTIONAL { P8 } } }
}
UNION
{ P9

FILTER ( R ) }

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 10 / 57



A formal semantics for SPARQL

A formal approach would be bene�cial for:
I Clarifying corner cases
I Helping in the implementation process
I Providing sound foundations

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 11 / 57



A formal semantics for SPARQL

A formal approach would be bene�cial for:
I Clarifying corner cases
I Helping in the implementation process
I Providing sound foundations

In this presentation:
I A formal compositional semantics for SPARQL
I A study of the complexity of evaluating SPARQL
I Optimization procedures

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 11 / 57



A standard algebraic syntax

I Triple patterns: just triples + variables,without blanks

?X :name "john" (?X ; name, john)

I Graph patterns: full parenthesized algebra

{ P1 P2 } ( P1 AND P2 )

{ P1 OPTIONAL { P2 }} ( P1 OPT P2 )

{ P1 } UNION { P2 } ( P1 UNION P2 )

{ P1 FILTER ( R ) } ( P1 FILTER R )

original SPARQL syntax algebraic syntax

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 12 / 57



A standard algebraic syntax

I Explicit precedence/association

Example
{ t1

t2
OPTIONAL { t3 }
OPTIONAL { t4 }
t5

}

( ( ( ( t1 AND t2 ) OPT t3 ) OPT t4 ) AND t5 )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 13 / 57



Mappings: building block for the semantics

De�nition
A mapping is apartial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 14 / 57



Mappings: building block for the semantics

De�nition
A mapping is apartial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 14 / 57



The semantics of triple patterns

Given an RDF graph and a triple patternt

De�nition
The evaluationof t is the set of mappings that

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 15 / 57



The semantics of triple patterns

Given an RDF graph and a triple patternt

De�nition
The evaluationof t is the set of mappings that

I maket to match the graph

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 15 / 57



The semantics of triple patterns

Given an RDF graph and a triple patternt

De�nition
The evaluationof t is the set of mappings that

I maket to match the graph
I have as domain the variables int .

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 15 / 57



The semantics of triple patterns

Given an RDF graph and a triple patternt

De�nition
The evaluationof t is the set of mappings that

I maket to match the graph
I have as domain the variables int .

Example

graph triple evaluation
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

(?X ; name, ?Y )
?X ?Y

� 1: R1 john
� 2: R2 paul

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 15 / 57



The semantics of triple patterns

Given an RDF graph and a triple patternt

De�nition
The evaluationof t is the set of mappings that

I maket to match the graph
I have as domain the variables int .

Example

graph triple evaluation
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

(?X ; name,?Y )
?X ?Y

� 1: R1 john
� 2: R2 paul

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 15 / 57



The semantics of triple patterns

Given an RDF graph and a triple patternt

De�nition
The evaluationof t is the set of mappings that

I maket to match the graph
I have as domain the variables int .

Example

graph triple evaluation
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

(?X ; name,?Y )
?X ?Y

� 1: R1 john
� 2: R2 paul

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 15 / 57



Compatible mappings

De�nition
Two mappings arecompatibleif they agreein their shared
variables.

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 16 / 57



Compatible mappings

De�nition
Two mappings arecompatibleif they agreein their shared
variables.

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 16 / 57



Compatible mappings

De�nition
Two mappings arecompatibleif they agreein their shared
variables.

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [ � 2 : R1 john J@edu.ex

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 16 / 57



Compatible mappings

De�nition
Two mappings arecompatibleif they agreein their shared
variables.

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [ � 2 : R1 john J@edu.ex

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 16 / 57



Compatible mappings

De�nition
Two mappings arecompatibleif they agreein their shared
variables.

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [ � 2 : R1 john J@edu.ex
� 1 [ � 3 : R1 john P@edu.ex R2

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 16 / 57



Compatible mappings

De�nition
Two mappings arecompatibleif they agreein their shared
variables.

Example

?X ?Y ?Z ?V
� 1 : R1 john
� 2 : R1 J@edu.ex
� 3 : P@edu.ex R2

� 1 [ � 2 : R1 john J@edu.ex
� 1 [ � 3 : R1 john P@edu.ex R2

I � 2 and � 3 are not compatible

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 16 / 57



Sets of mappings and operations

Let M1 and M2 be sets of mappings:

De�nition

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 17 / 57



Sets of mappings and operations

Let M1 and M2 be sets of mappings:

De�nition
Join: M1 M2

I extending mappings inM1 with compatible mappings inM2

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 17 / 57



Sets of mappings and operations

Let M1 and M2 be sets of mappings:

De�nition
Join: M1 M2

I extending mappings inM1 with compatible mappings inM2

Di�erence: M1 r M2

I mappings inM1 that cannot be extended with mappings inM2

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 17 / 57



Sets of mappings and operations

Let M1 and M2 be sets of mappings:

De�nition
Join: M1 M2

I extending mappings inM1 with compatible mappings inM2

Di�erence: M1 r M2

I mappings inM1 that cannot be extended with mappings inM2

Union: M1 [ M2

I mappings inM1 plus mappings inM2 (set theoretical union)

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 17 / 57



Sets of mappings and operations

Let M1 and M2 be sets of mappings:

De�nition
Join: M1 M2

I extending mappings inM1 with compatible mappings inM2

Di�erence: M1 r M2

I mappings inM1 that cannot be extended with mappings inM2

Union: M1 [ M2

I mappings inM1 plus mappings inM2 (set theoretical union)

De�nition

Left Outer Join: M1 M2 = ( M1 M2) [ (M1 r M2)

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 17 / 57



Semantics of SPARQL operators

Let M1 and M2 be the result ofevaluatingP1 and P2.

De�nition
The evaluation of:

(P1 AND P2) !
(P1 UNION P2) !
(P1 OPT P2) !

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 18 / 57



Semantics of SPARQL operators

Let M1 and M2 be the result ofevaluatingP1 and P2.

De�nition
The evaluation of:

(P1 AND P2) ! M1 M2

(P1 UNION P2) !
(P1 OPT P2) !

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 18 / 57



Semantics of SPARQL operators

Let M1 and M2 be the result ofevaluatingP1 and P2.

De�nition
The evaluation of:

(P1 AND P2) ! M1 M2

(P1 UNION P2) ! M1 [ M2

(P1 OPT P2) !

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 18 / 57



Semantics of SPARQL operators

Let M1 and M2 be the result ofevaluatingP1 and P2.

De�nition
The evaluation of:

(P1 AND P2) ! M1 M2

(P1 UNION P2) ! M1 [ M2

(P1 OPT P2) ! M1 M2

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 18 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

I from the Join

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

I from the Di�erence

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Simple example

Example
(R1; name, john)
(R1; email, J@ed.ex)
(R2; name, paul)

( (?X ; name, ?Y ) OPT (?X; email, ?E) )

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

I from the Union

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 19 / 57



Boolean �lter expressions (value constraints)

In �lter expressions we consider:
I equality = among variables and RDF terms
I unary predicatebound
I boolean combinations (̂, _ , : )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 20 / 57



Satisfaction of value constraints

A mappingsatis�es:
I ?X = c if it gives the valuec to variable ?X
I ?X =?Y if it gives the same value to ?X and ?Y
I bound(?X) if it is de�ned for ?X

De�nition
Evaluation of (P FILTER R): Set of mappings in the evaluation of
P that satisfyR.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 21 / 57



The evaluation problem

Input:
A mapping, a graphpattern, and an RDFgraph.

Question:
Is the mappingin the evaluation of thepattern against thegraph?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 22 / 57



Evaluation of simple patterns is polynomial

Theorem
For patterns using onlyAND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern� size of the graph).

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 23 / 57



Evaluation of simple patterns is polynomial

Theorem
For patterns using onlyAND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern� size of the graph).

Proof idea
I Check that the mapping makes every triple to match.
I Then check that the mapping satis�es theFILTERs.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 23 / 57



Evaluation including UNION is NP-complete

Theorem
The evaluation problem is NP-complete forAND-FILTER-UNION
expressions.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 24 / 57



Evaluation including UNION is NP-complete

Theorem
The evaluation problem is NP-complete forAND-FILTER-UNION
expressions.

Proof idea
I Reduction from3SAT.
I : bound is used to encode negation.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 24 / 57



In general: Evaluation problem is PSPACE-complete

Theorem
For general patterns that includeOPT operator, the evaluation
problem is PSPACE-complete.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 25 / 57



In general: Evaluation problem is PSPACE-complete

Theorem
For general patterns that includeOPT operator, the evaluation
problem is PSPACE-complete.

Can we e�ciently evaluate SPARQL queries in practice?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 25 / 57



In general: Evaluation problem is PSPACE-complete

Theorem
For general patterns that includeOPT operator, the evaluation
problem is PSPACE-complete.

Can we e�ciently evaluate SPARQL queries in practice?
I We need to understand how the complexity depends on the

operators of SPARQL.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 25 / 57



A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION � � � UNION Pn

where each Pi is UNION{free.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 26 / 57



A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION � � � UNION Pn

where each Pi is UNION{free.

Graph pattern expressions are usually in this normal form.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 26 / 57



A simple normal from

Proposition (UNION Normal Form)
Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION � � � UNION Pn

where each Pi is UNION{free.

Graph pattern expressions are usually in this normal form.

Corollary
The evaluation problem is polynomial forAND-FILTER-UNION
expressions in the UNION normal form.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 26 / 57



PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 27 / 57



PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
I Reduction fromQBF: A pattern encodes a quanti�ed

propositional formula

8x19y18x29y2 � � �  :

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 27 / 57



PSPACE-completeness: A stronger lower bound

Theorem
The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
I Reduction fromQBF: A pattern encodes a quanti�ed

propositional formula

8x19y18x29y2 � � �  :

I NestedOPTs are used to encode quanti�er alternation.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 27 / 57



PSPACE-hardness: A closer look

Assume' = 8x19y1  , where = ( x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G :

R :

P :

P' :

� 0 :

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 28 / 57



PSPACE-hardness: A closer look

Assume' = 8x19y1  , where = ( x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R :

P :

P' :

� 0 :

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 28 / 57



PSPACE-hardness: A closer look

Assume' = 8x19y1  , where = ( x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P :

P' :

� 0 :

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 28 / 57



PSPACE-hardness: A closer look

Assume' = 8x19y1  , where = ( x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER R )

P' :

� 0 :

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 28 / 57



PSPACE-hardness: A closer look

Assume' = 8x19y1  , where = ( x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER R )

P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

� 0 :

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 28 / 57



PSPACE-hardness: A closer look

Assume' = 8x19y1  , where = ( x1 _ : y1) ^ (: x1 _ y1).

We generateG, P' and � 0 such that � 0 belongs to the answer of
P' over G i� ' is valid:

G : f (a; tv ; 0); (a; tv ; 1); (a; false ; 0); (a; true ; 1)g

R : ((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1))

P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER R )

P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

� 0 : f ?B0 7! 1g

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 28 / 57



PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 29 / 57



PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 29 / 57



PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 29 / 57



PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 29 / 57



PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 29 / 57



PSPACE-hardness: A closer look

' : 8x19y1 (x1 _ : y1) ^ (: x1 _ y1)
P : ((( a; tv ; ?X1) AND (a; tv ; ?Y1)) FILTER

((?X1 = 1 _ ?Y1 = 0) ^ (?X1 = 0 _ ?Y1 = 1)))
P' : (a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))
P1 : (a; tv ; ?X1)
Q1 : (a; tv ; ?X1) AND (a; tv ; ?Y1) AND (a; false ; ?B0)

P1

?B0 7! 1

?X1 7! 0 ?Y1 7! i ?B0 7! 0

?X1 7! 1 ?Y1 7! j ?B0 7! 0

Q1

?X1 7! 0

?X1 7! 1

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 29 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

"
?B0

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

" "
?B0 ?B0

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

" " "
?B0 � ?B0

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

" " "
?B0 � ?B0

Is ?B0 giving optional information forP1?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

" " "
?B0 � ?B0

Is ?B0 giving optional information forP1?
I No, ?B0 is giving optional information for (a; true ; ?B0)?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a; true ; ?B0) OPT (P1 OPT (Q1 AND P ))

" " "
?B0 � ?B0

Is ?B0 giving optional information forP1?
I No, ?B0 is giving optional information for (a; true ; ?B0)?

These patterns rarely occur in practice.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 30 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
"

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
" " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

"

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

" "

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



Well{designed patterns

De�nition
An AND-FILTER-OPT pattern is well{designed if for every OPTin
the pattern:

( � � � � � � � � � � � � ( A OPT B ) � � � � � � � � � � � � )
" " " "

if a variable occursinsideB and anywhere outside the OPT
operator, then the variablemust also occur insideA.

Example
�

(?Y ; name, paul) OPT (?X; email, ?Z)
�

AND (?X; name, john)

�� " "

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 31 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Theorem
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 32 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Theorem
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

Corollary
The evaluation problem is coNP-complete for patterns of theform
P1 UNION P2 UNION � � � UNION Pk , where each Pi is a
well-designedAND-FILTER-OPT pattern.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 32 / 57



AND-FILTER-OPT fragment: Reducing the complexity

Theorem
The evaluation problem iscoNP-completefor well-designed
AND-FILTER-OPT patterns.

Corollary
The evaluation problem is coNP-complete for patterns of theform
P1 UNION P2 UNION � � � UNION Pk , where each Pi is a
well-designedAND-FILTER-OPT pattern.

Can we use this in practice?
I Well-designed patterns are suitable for optimization.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 32 / 57



Classical optimization

I Classical optimization assumesnull{rejection.
I null{rejection: the join/outer{join condition must fail in the

presence of nulls.

I SPARQL operations arenot null{rejecting.
I by de�nition of compatible mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 33 / 57



Classical optimization

I Classical optimization assumesnull{rejection.
I null{rejection: the join/outer{join condition must fail in the

presence of nulls.

I SPARQL operations arenot null{rejecting.
I by de�nition of compatible mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 33 / 57



Classical optimization

I Classical optimization assumesnull{rejection.
I null{rejection: the join/outer{join condition must fail in the

presence of nulls.

I SPARQL operations arenot null{rejecting.
I by de�nition of compatible mappings.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 33 / 57



Well{designed graph patterns and optimization

Consider the following rules:

((P1 OPT P2) FILTER R) �! ((P1 FILTER R) OPT P2) (1)

(P1 AND (P2 OPT P3)) �! ((P1 AND P2) OPT P3) (2)

((P1 OPT P2) AND P3) �! ((P1 AND P3) OPT P2) (3)

Proposition
If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), thenQ is a well-designed pattern
equivalent to P.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 34 / 57



Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQ1, : : :, Qk such that:

P is constructed fromQ1, : : :, Qk by using only the OPT operator.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 35 / 57



Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQ1, : : :, Qk such that:

P is constructed fromQ1, : : :, Qk by using only the OPT operator.

Theorem
Every well-designed pattern is equivalent to a pattern inOPT
normal form.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 35 / 57



Well{designed graph patterns and optimization

A graph patternP is in OPT normal formif there exist
AND-FILTER patternsQ1, : : :, Qk such that:

P is constructed fromQ1, : : :, Qk by using only the OPT operator.

Theorem
Every well-designed pattern is equivalent to a pattern inOPT
normal form.

Patterns in OPT normal form can be evaluated more e�ciently:

I AND-FILTER expressions are evaluated �rst, and then the results
are combined using the OPT operator.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 35 / 57



Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 36 / 57



Querying RDFS data

I RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp ), subClassOf (rdf:sc ), domain (rdf:dom ), range
(rdf:range ), type (rdf:type ).

I Evaluating queries which involve this vocabulary is
challenging.

I There is not yet consensus in the Semantic Web community
on how to de�ne a query language for RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 37 / 57



A simple SPARQL query:(Ronaldinho; rdf:type ; person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spain

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 38 / 57



SPARQL over RDFS

Checking whethera triple t is in a graphG is the basic step when
answering queries over RDF.

I For the case of RDFS, we need to check whethert is implied byG.

The notion of entailment in RDFS can be de�ned in terms of
classical notions such model, interpretation, etc.

I As for the case of �rst-order logic.

This notion can also be characterized by a set ofinference rules.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 39 / 57



Entailment in RDFS

There are inference systems characterizing the notion of entailment
in RDFS:

Subproperty rules :
(p; rdf :sp; q) (a; p; b)

(a; q; b)

Subclass rules :
(a; rdf :sc; b) (b; rdf :sc; c)

(a; rdf :sc; c)

Typing rules :
(p; rdf :dom; c) (a; p; b)

(a; rdf :type ; c)

� � �

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 40 / 57



SPARQL over RDFS: Closure of a graph

The closure of an RDFS graphG, denoted by cl(G), is the graph
obtained by adding toG all the triples that are implied byG.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 41 / 57



SPARQL over RDFS: Closure of a graph

The closure of an RDFS graphG, denoted by cl(G), is the graph
obtained by adding toG all the triples that are implied byG.

Basic step for answering queries over RDFS:
I Checking whether a tripet is in cl(G).

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 41 / 57



SPARQL over RDFS: Closure of a graph

The closure of an RDFS graphG, denoted by cl(G), is the graph
obtained by adding toG all the triples that are implied byG.

Basic step for answering queries over RDFS:
I Checking whether a tripet is in cl(G).

De�nition
The RDFS-evaluation of a graph pattern P over an RDFS graph G
is de�ned as the evaluation ofP over cl(G).

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 41 / 57



Example:(Ronaldinho; rdf:type ; person)over the closure

rdf:type

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spainlives in

rdf:type

rdf:sc

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 42 / 57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 43 / 57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 43 / 57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

I The size of the closure ofG can be quadratic in the size ofG.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 43 / 57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

I The size of the closure ofG can be quadratic in the size ofG.

I Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 43 / 57



Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL queryP over an
RDFS graphG:

I Compute cl(G), and then evaluateP over cl(G) as for RDF.

This approach has some drawbacks:

I The size of the closure ofG can be quadratic in the size ofG.

I Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

I The approach is not goal-oriented.

When evaluating (a; rdf:sc ; b), a goal-oriented approach should
not compute cl(G):

I It should just verify whether there exists a path froma to b in
G where every edge has labelrdf:sc .

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 43 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Extending SPARQL with navigational capabilities

The example (a; rdf:sc ; b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

I A queryP over an RDFS graphG is answered by navigatingG
(cl(G) is not computed).

This approach has some advantages:

I It is goal-oriented.

I It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

I Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 44 / 57



Outline

I RDF and RDFS: A brief introduction

I SPARQL: A query language for RDF
I Formal semantics
I Complexity of the evaluation problem
I Optimization methods

I SPARQL as a query language for RDFS
I Formal semantics and the closure of an RDFS graph

I NAV-SPARQL: A navigational query language for RDFS

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 45 / 57



Navigational axes

Forward axes for an RDF triple (a; p; b):

next

ba
p

edge node

Backward axes for an RDF triple (a; p; b):

p
a b

next -1

node-1edge-1

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 46 / 57



A �rst attempt: 0-NAV-SPARQL

Syntax of navigational expressions:

exp := self j self ::a j axis j

axis::a j exp=exp j expjexp j exp�

wherea 2 U and axis2 f next , next -1 , edge, edge-1 , node,
node-1 g.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 47 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

Jexp1=exp2KG = f (x; y) j 9z (x; z) 2 Jexp1KG and
(z; y) 2 Jexp2KGg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

Jexp1=exp2KG = f (x; y) j 9z (x; z) 2 Jexp1KG and
(z; y) 2 Jexp2KGg

Jexp1jexp2KG = Jexp1KG [ Jexp2KG

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jself KG = f (x; x) j x is in Gg
Jnext KG = f (x; y) j 9z 2 U (x; z; y) 2 Gg
JedgeKG = f (x; y) j 9z 2 U (x; y; z) 2 Gg

Jself ::aKG = f (a; a)g
Jnext ::aKG = f (x; y) j (x; a; y) 2 Gg
Jedge::aKG = f (x; y) j (x; y; a) 2 Gg

Jexp1=exp2KG = f (x; y) j 9z (x; z) 2 Jexp1KG and
(z; y) 2 Jexp2KGg

Jexp1jexp2KG = Jexp1KG [ Jexp2KG

Jexp� KG = Jself KG [ JexpKG [ Jexp=expKG [
Jexp=exp=expKG [ � � �

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 48 / 57



A �rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp; y), where exp is a navigational expression.

I Examples: (Ronaldinho; next ::lives in ; Spain) and
(?X; (next ::(rdf:sc ))+ ; ?Y ).

Semantics of 0-NAV-SPARQL: The evaluation oft = (? X ; exp; ?Y )
over an RDFS graphG is the set of mappings� such that

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 49 / 57



A �rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp; y), where exp is a navigational expression.

I Examples: (Ronaldinho; next ::lives in ; Spain) and
(?X; (next ::(rdf:sc ))+ ; ?Y ).

Semantics of 0-NAV-SPARQL: The evaluation oft = (? X ; exp; ?Y )
over an RDFS graphG is the set of mappings� such that

I The domain of� is f ?X ; ?Y g, and

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 49 / 57



A �rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp; y), where exp is a navigational expression.

I Examples: (Ronaldinho; next ::lives in ; Spain) and
(?X; (next ::(rdf:sc ))+ ; ?Y ).

Semantics of 0-NAV-SPARQL: The evaluation oft = (? X ; exp; ?Y )
over an RDFS graphG is the set of mappings� such that

I The domain of� is f ?X ; ?Y g, and
I (� (?X ); � (?Y )) 2 JexpKG

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 49 / 57



A �rst attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x; exp; y), where exp is a navigational expression.

I Examples: (Ronaldinho; next ::lives in ; Spain) and
(?X; (next ::(rdf:sc ))+ ; ?Y ).

Semantics of 0-NAV-SPARQL: The evaluation oft = (? X ; exp; ?Y )
over an RDFS graphG is the set of mappings� such that

I The domain of� is f ?X ; ?Y g, and
I (� (?X ); � (?Y )) 2 JexpKG

Example:(?X ; (next ::Iberia)+ ; ?Y ) AND (?X; (next ::AirFrance)+ ; ?Y )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 49 / 57



Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

I Can we capture SPARQL over RDFS?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 50 / 57



Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

I Can we capture SPARQL over RDFS?

For every RDFS graphG and SPARQL patternP, we would like to
�nd a 0-NAV-SPARQL patternQ such that:

I RDFS-evaluation ofP over G = evaluation of Q over G.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 50 / 57



Is 0-NAV-SPARQL a good language for RDFS?

Theorem
There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 51 / 57



Is 0-NAV-SPARQL a good language for RDFS?

Theorem
There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even forP = (? X ; a; ?Y ), wherea is
an arbitrary element inU.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 51 / 57



Is 0-NAV-SPARQL a good language for RDFS?

Theorem
There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even forP = (? X ; a; ?Y ), wherea is
an arbitrary element inU.

How can we capture SPARQL over RDFS?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 51 / 57



Is 0-NAV-SPARQL a good language for RDFS?

Theorem
There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even forP = (? X ; a; ?Y ), wherea is
an arbitrary element inU.

How can we capture SPARQL over RDFS?
I We adopt the notion of branching from XPath.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 51 / 57



A successful attempt: NAV-SPARQL

Syntax of navigational expressions:

exp := self j self ::a j axis j

axis::a j axis::[exp] j exp=exp j expjexp j exp�

wherea 2 U and axis2 f next , next -1 , edge, edge-1 , node,
node-1 g.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 52 / 57



A successful attempt: NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 53 / 57



A successful attempt: NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jnext ::[exp]KG = f (x; y) j 9z; w 2 U (x; z; y) 2 G and
(z; w) 2 JexpKGg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 53 / 57



A successful attempt: NAV-SPARQL

Given an RDFS graphG, the semantics of navigational expressions
is de�ned as follows:

Jnext ::[exp]KG = f (x; y) j 9z; w 2 U (x; z; y) 2 G and
(z; w) 2 JexpKGg

Jedge::[exp]KG = f (x; y) j 9z; w 2 U (x; y; z) 2 G and
(z; w) 2 JexpKGg

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 53 / 57



NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X ; a; ?Y ) over RDFS is equivalent to NAV-SPARQL
pattern (?X ; next ::[(next ::(rdf:sp )) � =(self ::a)]; ?Y ).

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 54 / 57



NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X ; a; ?Y ) over RDFS is equivalent to NAV-SPARQL
pattern (?X ; next ::[(next ::(rdf:sp )) � =(self ::a)]; ?Y ).

a
rdf:sp rdf:sp rdf:sp

?X

?Y

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 54 / 57



NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X ; a; ?Y ) over RDFS is equivalent to NAV-SPARQL
pattern (?X ; next ::[(next ::(rdf:sp )) � =(self ::a)]; ?Y ).

?Y

a
rdf:sp rdf:sp rdf:sp

?X

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 54 / 57



NAV-SPARQL: Capturing SPARQL over RDFS

Theorem
For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 55 / 57



NAV-SPARQL: Capturing SPARQL over RDFS

Theorem
For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace(?X ; a; ?Y ) by (?X ; R(a); ?Y ), where:

R(rdf:sc ) = ( next ::(rdf:sc ))+

R(rdf:sp ) = ( next ::(rdf:sp ))+

� � �

R(b) = next ::[(next ::(rdf:sp )) � =(self ::b)]

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 55 / 57



NAV-SPARQL: Capturing SPARQL over RDFS

Theorem
For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace(?X ; a; ?Y ) by (?X ; R(a); ?Y ), where:

R(rdf:sc ) = ( next ::(rdf:sc ))+

R(rdf:sp ) = ( next ::(rdf:sp ))+

� � �

R(b) = next ::[(next ::(rdf:sp )) � =(self ::b)]

Note: R(rdf:type ) usesnext , edge and node-1 .

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 55 / 57



The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query:(?X ; (next ::[(next ::(rdf:sp )) � =(self ::travel)])+ ; ?Y )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query:(?X ; (next ::[(next ::(rdf:sp )) � =(self ::travel)])+ ; ?Y )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query:(?X ; (next ::[(next ::(rdf:sp )) � =(self ::travel)])+ ; ?Y )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



The extra expressive power of NAV-SPARQL

rdf:sp

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

travel

A natural query:(?X ; (next ::[(next ::(rdf:sp )) � =(self ::travel)])+ ; ?Y )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



The extra expressive power of NAV-SPARQL

rdf:sp

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

travel

A natural query:(?X ; (next ::[(next ::(rdf:sp )) � =(self ::travel)])+ ; ?Y )

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



The extra expressive power of NAV-SPARQL

rdf:sp

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

travel

A natural query:(?X ; (next ::[(next ::(rdf:sp )) � =(self ::travel)])+ ; ?Y )

I This query cannot be expressed in SPARQL over RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 56 / 57



Ongoing work

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e�ciently?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e�ciently? Can this

language be used over large RDFS graphs?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e�ciently? Can this

language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e�ciently? Can this

language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

I Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS?

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57



Ongoing work

I Implementation of SPARQL.
I How useful are the optimization rules in practice?

I Implementation of NAV-SPARQL.
I Can this language be implemented e�ciently? Can this

language be used over large RDFS graphs?

I Is the extra expressive power of NAV-SPARQL useful in
practice?

I Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS? One level of nesting is enough to capture SPARQL
over RDFS.

M. Arenas { SPARQL over RDF, and its possible extensions to RDFS 57 / 57


