Schema Mapping Management in Data Exchange Systems

Marcelo Arenas

Department of Computer Science Pontificia Universidad Católica de Chile

This is joint work with Jorge Pérez, Juan Reutter and Cristian Riveros

The problem of data exchange

Given: A source schema S, a target schema T and a specification Σ_{ST} of the relationship between these schemas

Data exchange: Problem of materializing an instance of ${\bf T}$ given an instance of ${\bf S}$

- ▶ Target instance should reflect the source data as accurately as possible, given the constraints imposed by Σ_{ST} and T
- It should be efficiently computable
- ▶ It should allow one to evaluate queries on the target in a way that is *semantically consistent* with the source data

Schema **S** Schema **T**

Schema T

Data exchange: Some fundamental questions

Why is data exchange an interesting problem?

▶ Is it a difficult problem?

What are the challenges in the area?

- What is a good language for specifying the relationship between source and target data?
- ▶ What is a good instance to materialize? Why is it good?
- ▶ What does it mean to answer a queries over target data?
- ► How do we answer queries over target data? Can we do this efficiently?

Data exchange in relational databases

It has been extensively studied in the relational world.

▶ It has also been implemented: IBM Clio

Relational data exchange setting:

- ▶ Source and target schemas: Relational schemas
- Relationship between source and target schemas:
 Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

 Efficient algorithms for materializing target instances and for answering queries over the target schema have been developed

Schema mapping: The key component in relational data exchange

Schema mapping: $\mathcal{M} = (S, T, \Sigma_{ST})$

- ▶ S and T are disjoint relational schemas
- \triangleright Σ_{ST} is a finite set of st-tgds:

$$\forall \bar{x} \forall \bar{y} \left(\varphi(\bar{x}, \bar{y}) \to \exists \bar{z} \, \psi(\bar{x}, \bar{z}) \right)$$

 $\varphi(\bar{x},\bar{y})$: conjunction of relational atomic formulas over **S**

 $\psi(\bar{x},\bar{z})$: conjunction of relational atomic formulas over **T**

Relational schema mappings: An example

Example

- ► **S**: book(title, author_name, affiliation)
- ► **T**: writer(name, book_title, year)
- Σ_{ST}:

```
\forall x_1 \forall x_2 \forall y_1 (book(x_1, x_2, y_1) \rightarrow \exists z_1 writer(x_2, x_1, z_1))
```

Relational schema mappings: An example

Example

- ► S: book(title, author_name, affiliation)
- ► T: writer(name, book_title, year)
- Σ_{ST}:

$$\forall x_1 \forall x_2 \forall y_1 \left(book(x_1, x_2, y_1) \rightarrow \exists z_1 \ writer(x_2, x_1, z_1)\right)$$

Note

We omit universal quantifiers in st-tgds:

$$book(x_1, x_2, y_1) \rightarrow \exists z_1 \ writer(x_2, x_1, z_1)$$

Relational data exchange problem

Fixed:
$$\mathcal{M} = (S, T, \Sigma_{ST})$$

Problem: Given instance I of S, find an instance J of T such that (I, J) satisfies Σ_{ST}

▶ (I, J) satisfies $\varphi(\bar{x}, \bar{y}) \to \exists \bar{z} \, \psi(\bar{x}, \bar{z})$ if whenever I satisfies $\varphi(\bar{a}, \bar{b})$, there is a tuple \bar{c} such that J satisfies $\psi(\bar{a}, \bar{c})$

Relational data exchange problem

Fixed:
$$\mathcal{M} = (S, T, \Sigma_{ST})$$

Problem: Given instance I of S, find an instance J of T such that (I, J) satisfies Σ_{ST}

▶ (I, J) satisfies $\varphi(\bar{x}, \bar{y}) \to \exists \bar{z} \, \psi(\bar{x}, \bar{z})$ if whenever I satisfies $\varphi(\bar{a}, \bar{b})$, there is a tuple \bar{c} such that J satisfies $\psi(\bar{a}, \bar{c})$

Notation

J is a solution for I under \mathcal{M}

▶ $Sol_{\mathcal{M}}(I)$: Set of solutions for I under \mathcal{M}

The notion of solution: First example

Example

Consider mapping ${\mathcal M}$ specified by:

$$book(x_1, x_2, y_1) \rightarrow \exists z_1 \ writer(x_2, x_1, z_1)$$

	book	title	author_name	affiliation
Given 1:		Algebra	Hungerford	U. Washington
		Real Analysis	Royden	Stanford

The notion of solution: First example

Example

Consider mapping ${\mathcal M}$ specified by:

$$book(x_1, x_2, y_1) \rightarrow \exists z_1 \ writer(x_2, x_1, z_1)$$

_	book	title	author_name	affiliation
Given 1:		Algebra	•	U. Washington
		Real Analysis	Royaen	Stanford

	writer	name	book_title	year
Solution J_1 :		Hungerford	Algebra	1974
		Royden	Real Analysis	1988

The notion of solution: First example

Example

Consider mapping ${\mathcal M}$ specified by:

$$book(x_1, x_2, y_1) \rightarrow \exists z_1 \ writer(x_2, x_1, z_1)$$

	book	title	author_name	affiliation
Given 1:		Algebra	0	U. Washington
		Real Analysis	Royden	Stanford

	writer	name	book_title	year
Solution J_1 :		Hungerford	Algebra	1974
		Royden	Real Analysis	1988

	writer	name	book_title	year
Solution J_2 :		Hungerford	Algebra	n_1
		Royden	Real Analysis	n_2

◆ロ → ◆部 → ◆ き → ◆ き → りへ(^)

Example

- ▶ S: employee(name)
- ► **T**: dept(name, number)
- ▶ Σ_{ST} : $employee(x) \rightarrow \exists y \ dept(x, y)$

Solutions for $I = \{employee(Peter)\}$:

Example

- ▶ S: employee(name)
- ► **T**: dept(name, number)
- ▶ Σ_{ST} : $employee(x) \rightarrow \exists y \ dept(x, y)$

Solutions for $I = \{employee(Peter)\}$:

 J_1 : dept(Peter,1)

Example

- ► S: employee(name)
- ► **T**: dept(name, number)
- ▶ Σ_{ST} : $employee(x) \rightarrow \exists y \ dept(x, y)$

```
Solutions for I = \{employee(Peter)\}:
```

```
J_1: dept(Peter,1)
```

 J_2 : dept(Peter,1), dept(Peter,2)

Example

- ► S: employee(name)
- ► **T**: dept(name, number)
- ▶ Σ_{ST} : $employee(x) \rightarrow \exists y \ dept(x, y)$

```
Solutions for I = \{employee(Peter)\}:
```

```
J_1: dept(Peter,1)
```

 J_2 : dept(Peter,1), dept(Peter,2)

 J_3 : dept(Peter,1), dept(John,1)

Example

```
► S: employee(name)
```

```
► T: dept(name, number)
```

```
▶ \Sigma_{ST}: employee(x) \rightarrow \exists y \ dept(x, y)
```

```
Solutions for I = \{employee(Peter)\}:
```

```
J_1: dept(Peter,1)
```

```
J_2: dept(Peter,1), dept(Peter,2)
```

```
J_3: dept(Peter,1), dept(John,1)
```

```
J_4: dept(Peter, n_1)
```

Example

```
► S: employee(name)
```

```
► T: dept(name, number)
```

```
▶ \Sigma_{ST}: employee(x) \rightarrow \exists y \ dept(x, y)
```

```
Solutions for I = \{employee(Peter)\}:

J_1: dept(Peter,1)

J_2: dept(Peter,1), dept(Peter,2)

J_3: dept(Peter,1), dept(John,1)

J_4: dept(Peter,n_1)

J_5: dept(Peter,n_1), dept(Peter,n_2)
```

Canonical universal solution

Question

What is a good instance to materialize?

Canonical universal solution

Question

What is a good instance to materialize?

Algorithm

Input : (S, T, Σ_{ST}) and an instance I of S

Output : Canonical universal solution J^{\star} for I under \mathcal{M}

let $J^*:=$ empty instance of ${\bf T}$ for every $\varphi(\bar x,\bar y)\to\exists \bar z\,\psi(\bar x,\bar z)$ in $\Sigma_{{\bf ST}}$ do for every $\bar a,\,\bar b$ such that I satisfies $\varphi(\bar a,\bar b)$ do create a fresh tuple $\bar n$ of pairwise distinct null values insert $\psi(\bar a,\bar n)$ into J^*

Canonical universal solution: Example

Example

Consider mapping ${\mathcal M}$ specified by dependency:

$$employee(x) \rightarrow \exists y \ dept(x, y)$$

Canonical universal solution for $I = \{employee(Peter), employee(John)\}$:

- ightharpoonup For a = Peter do
 - Create a fresh null value n_1
 - ▶ Insert $dept(Peter, n_1)$ into J^*
- ▶ For a = John do
 - Create a fresh null value n₂
 - ▶ Insert $dept(John, n_2)$ into J^*

```
Result: J^* = \{dept(Peter, n_1), dept(John, n_2)\}
```

Query answering in data exchange

Given: Mapping \mathcal{M} , source instance I and query Q over the target schema

▶ What does it mean to answer Q?

Query answering in data exchange

Given: Mapping \mathcal{M} , source instance I and query Q over the target schema

▶ What does it mean to answer *Q*?

Definition (Certain answers)
$$\operatorname{certain}_{\mathcal{M}}(Q,I) = \bigcap_{\substack{J \text{ is a solution for } I \text{ under } \mathcal{M}}} Q(J)$$

Certain answers: Example

Example Consider mapping \mathcal{M} specified by: $employee(x) \rightarrow \exists y \ dept(x, y)$ Given instance $I = \{employee(Peter)\}$:

 $certain_{\mathcal{M}}(\exists y \ dept(x, y), I) = \{Peter\}$ $certain_{\mathcal{M}}(dept(x, y), I) = \emptyset$

Query rewriting: An approach for answering queries

How can we compute certain answers?

▶ Naïve algorithm does not work: infinitely many solutions

Query rewriting: An approach for answering queries

How can we compute certain answers?

▶ Naïve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]: Query Rewriting

Given a mapping \mathcal{M} and a target query Q, compute a query Q^* such that for every source instance I with canonical universal solution J^* :

$$\operatorname{certain}_{\mathcal{M}}(Q, I) = Q^{\star}(J^{\star})$$

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping \mathcal{M} specified by st-tgds and a union of conjunctive queries Q, there exists a query Q^* such that for every source instance I with canonical universal solution J^* :

$$certain_{\mathcal{M}}(Q,I) = Q^*(J^*)$$

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping \mathcal{M} specified by st-tgds and a union of conjunctive queries Q, there exists a query Q^* such that for every source instance I with canonical universal solution J^* :

$$\operatorname{certain}_{\mathcal{M}}(Q, I) = Q^{\star}(J^{\star})$$

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:

$$Q^{\star}(x_1,\ldots,x_m) = \mathbf{C}(x_1) \wedge \cdots \wedge \mathbf{C}(x_m) \wedge Q(x_1,\ldots,x_m)$$

Query rewriting over the canonical solution: Example

Example

Let \mathcal{M} be specified by:

$$employee(x) \rightarrow \exists y \ dept(x, y)$$

Let
$$Q_1(x) = \exists y \ dept(x, y) \ \text{and} \ Q_2(x, y) = dept(x, y)$$
:
$$Q_1^{\star}(x) = \mathbf{C}(x) \land \exists y \ dept(x, y)$$
$$Q_2^{\star}(x, y) = \mathbf{C}(x) \land \mathbf{C}(y) \land dept(x, y)$$

Let $I = \{employee(Peter), employee(John)\}$:

$$J^* = \{dept(Peter, n_1), dept(John, n_2)\}$$

Then:

Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered to be fixed.

Is this a reasonable assumption?

Corollary (FKMP03)

For mappings given by st-tgds, certain answers for **UCQ** can be computed in polynomial time (data complexity)

Relational data exchange: Some lessons learned

Key steps in the development of the area:

- ▶ Definition of schema mappings: Precise syntax and semantics
 - Definition of the notion of solution
- Identification of good solutions
- ▶ Polynomial time algorithms for materializing good solutions
- Definition of target queries: Precise semantics
- Polynomial time algorithms for computing certain answers for UCQ

Relational data exchange: Some lessons learned

Key steps in the development of the area:

- ▶ Definition of schema mappings: Precise syntax and semantics
 - Definition of the notion of solution
- Identification of good solutions
- Polynomial time algorithms for materializing good solutions
- Definition of target queries: Precise semantics
- Polynomial time algorithms for computing certain answers for UCQ

Creating schema mappings is a time consuming and expensive process

Manual or semi-automatic process in general

We need some operators for schema mappings

We need some operators for schema mappings

► Composition in the above case

Metadata management

Contributions mentioned in the previous slides are just a first step towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design and integration of complex application artifacts, but also their subsequent manipulation.

Metadata management

This has motivated the need for the development of a general infrastructure for managing schema mappings.

The problem of managing schema mappings is called **metadata management**.

High-level algebraic operators, such as compose, are used to manipulate mappings.

What other operators are needed?

An inverse operator is needed in this case

An **inverse** operator is needed in this case

Combined with the composition operator

An **inverse** operator is needed in this case

Combined with the composition operator

Outline of the talk

- Composition operator
- Inverse operator
- Combination of both operators
 - Key ingredient: Conditional tables

The composition operator

Question

What is the semantics of the composition operator?

The composition operator

Question

What is the semantics of the composition operator?

Notation

We can view a mapping ${\mathcal M}$ as a set of pairs:

$$(I,J) \in \mathcal{M}$$
 iff $J \in Sol_{\mathcal{M}}(I)$

The composition operator

Question

What is the semantics of the composition operator?

Notation

We can view a mapping ${\mathcal M}$ as a set of pairs:

$$(I,J) \in \mathcal{M}$$
 iff $J \in Sol_{\mathcal{M}}(I)$

Definition (FKPT04)

Let \mathcal{M}_{12} be a mapping from \mathbf{S}_1 to \mathbf{S}_2 , and \mathcal{M}_{23} a mapping from \mathbf{S}_2 to \mathbf{S}_3 :

$$\mathcal{M}_{12} \circ \mathcal{M}_{23} = \{ (I_1, I_3) \mid \exists I_2 : (I_1, I_2) \in \mathcal{M}_{12} \text{ and } (I_2, I_3) \in \mathcal{M}_{23} \}$$

Question

What is the right language for expressing the composition?

st-tgds?

Question

What is the right language for expressing the composition?

st-tgds?

Example (FKPT04)

Consider mappings:

 \mathcal{M}_{12} : $takes(n,c) \rightarrow takes_1(n,c)$

 $takes(n, c) \rightarrow \exists s \ student(n, s)$

 \mathcal{M}_{23} : $student(n,s) \land takes_1(n,c) \rightarrow enrolled(s,c)$

Question

What is the right language for expressing the composition?

st-tgds?

Example (FKPT04)

Consider mappings:

 \mathcal{M}_{12} : $takes(n, c) \rightarrow takes_1(n, c)$

 $takes(n, c) \rightarrow \exists s \ student(n, s)$

 \mathcal{M}_{23} : $student(n, s) \land takes_1(n, c) \rightarrow enrolled(s, c)$

Does the following st-tgd express the composition?

 $takes(n, c) \rightarrow \exists y \ enrolled(y, c)$

Example (Cont'd)

This is the right dependency:

$$\forall n \exists y \forall c (takes(n, c) \rightarrow enrolled(y, c))$$

Example (Cont'd)

This is the right dependency:

$$\forall n \exists y \forall c \, (takes(n, c) \rightarrow enrolled(y, c))$$

Is first-order logic enough?

► Complexity theory can help us to answer this question

How difficult is the composition problem?

- ▶ Fix mappings \mathcal{M}_{12} and \mathcal{M}_{23}
- ▶ Problem: Decide whether $(I_1, I_3) \in \mathcal{M}_{12} \circ \mathcal{M}_{23}$

If $\mathcal{M}_{12}\circ\mathcal{M}_{23}$ is defined by a set of first-order sentences, then the composition problem can be solved efficiently: It is in AC⁰

▶ $AC^0 \subsetneq PTIME$

How difficult is the composition problem?

- ▶ Fix mappings \mathcal{M}_{12} and \mathcal{M}_{23}
- ▶ Problem: Decide whether $(I_1, I_3) \in \mathcal{M}_{12} \circ \mathcal{M}_{23}$

If $\mathcal{M}_{12}\circ\mathcal{M}_{23}$ is defined by a set of first-order sentences, then the composition problem can be solved efficiently: It is in AC⁰

AC⁰ ⊊ PTIME

But the composition problem is not easy: It can be NP-hard

▶ $AC^0 \subsetneq PTIME \subseteq NP$

Let see a difficult case taken from [FKPT04].

 \mathcal{M}_{12} is specified by:

$$node(x) \rightarrow \exists y \ coloring(x, y)$$

 $edge(x, y) \rightarrow edge'(x, y)$

 \mathcal{M}_{23} is specified by:

$$edge'(x,y) \land coloring(x,u) \land coloring(y,u) \rightarrow error(x,y)$$

 $coloring(x,y) \rightarrow color(y)$

What is the complexity of verifying whether $(I_1, I_3) \in \mathcal{M}_{12} \circ \mathcal{M}_{23}$?

What is the complexity of verifying whether $(I_1,I_3)\in\mathcal{M}_{12}\circ\mathcal{M}_{23}$?

Given a graph G = (N, E), consider instances I_1 , I_3 :

node in I_1 : N edge in I_1 : E

 $\textit{color} \ in \ \textit{I}_3 \quad : \quad \{1,2,3\}$

error in I_3 : \emptyset

Then: *G* is 3-colorable iff $(I_1, I_3) \in \mathcal{M}_{12} \circ \mathcal{M}_{23}$

Back to our initial question:

What is the right language for expressing the composition?

Back to our initial question:

What is the right language for expressing the composition?

Complexity theory can help us again:

▶ NP-hardness and Fagin's theorem: We need at least existential second-order logic

Back to our initial question:

What is the right language for expressing the composition?

Complexity theory can help us again:

- ▶ NP-hardness and Fagin's theorem: We need at least existential second-order logic
- Good news: There is a nice second-order language for expressing the composition

Example

Consider again the mappings:

$$\mathcal{M}_{12}$$
 : $takes(n,c) \rightarrow takes_1(n,c)$
 $takes(n,c) \rightarrow \exists s \ student(n,s)$

 \mathcal{M}_{23} : $student(n,s) \land takes_1(n,c) \rightarrow enrolled(s,c)$

The following SO tgd defines the composition:

$$\exists f \forall n \forall c (takes(n, c) \rightarrow enrolled(f(n), c))$$

Example

Consider again mappings \mathcal{M}_{12} :

$$node(x) \rightarrow \exists y \ coloring(x, y)$$

 $edge(x, y) \rightarrow edge'(x, y)$

and \mathcal{M}_{23} :

$$edge'(x, y) \land coloring(x, u) \land coloring(y, u) \rightarrow error(x, y)$$

 $coloring(x, y) \rightarrow color(y)$

Example (Cont'd)

The following SO tgd defines the composition:

$$\exists f \left[\forall x (node(x) \to color(f(x))) \land \\ \forall x \forall y (edge(x, y) \land f(x) = f(y) \to error(x, y)) \right]$$

Example (Cont'd)

The following SO tgd defines the composition:

$$\exists f \left[\forall x (node(x) \to color(f(x))) \land \\ \forall x \forall y (edge(x, y) \land f(x) = f(y) \to error(x, y)) \right]$$

This example shows the main ingredients of SO tgds:

- ▶ Predicates including terms: color(f(x))
- ▶ Equality between terms: f(x) = f(y)

SO tgds were introduced in [FKPT04]

▶ They have good properties regarding composition

SO tgds were introduced in [FKPT04]

▶ They have good properties regarding composition

Theorem (FKPT04)

If \mathcal{M}_{12} and \mathcal{M}_{23} are specified by SO tgds, then $\mathcal{M}_{12}\circ\mathcal{M}_{23}$ can be specified by an SO tgd

SO tgds were introduced in [FKPT04]

▶ They have good properties regarding composition

Theorem (FKPT04)

If \mathcal{M}_{12} and \mathcal{M}_{23} are specified by SO tgds, then $\mathcal{M}_{12}\circ\mathcal{M}_{23}$ can be specified by an SO tgd

► There exists an exponential time algorithm that computes such SO tgds

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a finite set of st-tgds, is defined by an SO tgd

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a finite set of st-tgds, is defined by an SO tgd

But not only that, SO tgds are exactly the right language:

Theorem (FKPT05)

Every SO tgd defines the composition of a finite number of mappings, each defined by a finite set of st-tgds.

The inverse operator

The inverse operator

The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

We consider three notions of inverse here:

- Fagin-inverse
- Quasi-inverse
- Maximum recovery

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to the identity mapping

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to the identity mapping

What is the identity mapping?

▶ $Id_S = \{(I,I) \mid I \text{ is an instance of } S\}$?

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to the identity mapping

What is the identity mapping?

▶ $Id_S = \{(I,I) \mid I \text{ is an instance of } S\}$?

For mapping specified by st-tgds, Id_S is not the right notion.

▶ $\overline{\mathsf{Id}}_{\mathsf{S}} = \{(I_1, I_2) \mid I_1, I_2 \text{ are instances of } \mathsf{S} \text{ and } I_1 \subseteq I_2\}$

The notion of Fagin-inverse: Formal definition

Definition (F06)

Let \mathcal{M} be a mapping from \mathbf{S}_1 to \mathbf{S}_2 , and \mathcal{M}^* a mapping from \mathbf{S}_2 to \mathbf{S}_1 . Then \mathcal{M}^* is a Fagin-inverse of \mathcal{M} if:

$$\mathcal{M} \circ \mathcal{M}^{\star} = \overline{\mathsf{Id}}_{\mathsf{S}_1}$$

The notion of Fagin-inverse: Formal definition

Definition (F06)

Let \mathcal{M} be a mapping from \mathbf{S}_1 to \mathbf{S}_2 , and \mathcal{M}^* a mapping from \mathbf{S}_2 to \mathbf{S}_1 . Then \mathcal{M}^* is a Fagin-inverse of \mathcal{M} if:

$$\mathcal{M} \circ \mathcal{M}^{\star} = \overline{\mathsf{Id}}_{\mathsf{S}_1}$$

Example

Consider mapping ${\mathcal M}$ specified by:

$$A(x) \rightarrow R(x) \wedge \exists y \, S(x,y)$$

Then the following are Fagin-inverses of \mathcal{M} :

 \mathcal{M}_1^{\star} : $R(x) \rightarrow A(x)$ \mathcal{M}_2^{\star} : $S(x,y) \rightarrow A(x)$

Is Fagin-inverse the right notion of inverse for mappings?

On the positive side: It is a natural notion

With good computational properties

On the negative side: A mapping specified by st-tgds is not guaranteed to admit a Fagin-inverse

▶ For example: Mapping specified by $A(x, y) \rightarrow R(x)$ does not admit a Fagin-inverse

In fact: This notion turns out to be rather restrictive, as it is rare that a schema mapping possesses a Fagin-inverse.

Is Fagin-inverse the right notion of inverse for mappings?

The notion of quasi-inverse was introduced in [FKPT07] to overcome this limitation.

► The idea is to relax the notion of Fagin-inverse by not differentiating between source instances that are equivalent for data exchange purposes

Numerous non-Fagin-invertible mappings possess natural and useful quasi-inverses.

 But there are still simple mappings specified by st-tgds that have no quasi-inverse

The notion of maximum recovery overcome this limitation.

Data may be lost in the exchange through a mapping ${\mathcal M}$

- ▶ We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - \mathcal{M}^{\star} is called a recovery of \mathcal{M}

Data may be lost in the exchange through a mapping ${\mathcal M}$

- ▶ We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - $ightharpoonup \mathcal{M}^*$ is called a recovery of \mathcal{M}

Example

Consider a mapping $\mathcal M$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

Data may be lost in the exchange through a mapping ${\mathcal M}$

- ▶ We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - $ightharpoonup \mathcal{M}^{\star}$ is called a recovery of \mathcal{M}

Example

Consider a mapping ${\mathcal M}$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

$$\mathcal{M}_1^*$$
: shuttle $(x, z) \rightarrow \exists u \exists v emp(x, u, v)$

Data may be lost in the exchange through a mapping ${\mathcal M}$

- We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - $ightharpoonup \mathcal{M}^{\star}$ is called a recovery of \mathcal{M}

Example

Consider a mapping $\mathcal M$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

$$\mathcal{M}_1^{\star}$$
: shuttle $(x,z) \rightarrow \exists u \exists v \ emp(x,u,v) \checkmark$

Data may be lost in the exchange through a mapping ${\mathcal M}$

- ▶ We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - $ightharpoonup \mathcal{M}^{\star}$ is called a recovery of \mathcal{M}

Example

Consider a mapping $\mathcal M$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

What mappings are recoveries of \mathcal{M} ?

 \mathcal{M}_{1}^{\star} : shuttle $(x, z) \rightarrow \exists u \exists v \ emp(x, u, v) \checkmark$

 \mathcal{M}_2^{\star} : shuttle $(x, z) \rightarrow \exists u emp(x, u, z)$

Data may be lost in the exchange through a mapping ${\mathcal M}$

- We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - $ightharpoonup \mathcal{M}^{\star}$ is called a recovery of \mathcal{M}

Example

Consider a mapping $\mathcal M$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

$$\mathcal{M}_{1}^{\star}$$
: $shuttle(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)$ \checkmark \mathcal{M}_{2}^{\star} : $shuttle(x, z) \rightarrow \exists u \ emp(x, u, z)$ \checkmark

Data may be lost in the exchange through a mapping \mathcal{M}

- \blacktriangleright We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. M
 - \blacktriangleright \mathcal{M}^* is called a recovery of \mathcal{M}

Example

Consider a mapping \mathcal{M} specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

```
\mathcal{M}_1^*: shuttle(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)
\mathcal{M}_2^{\star}: shuttle(x,z) \rightarrow \exists u emp(x,u,z)
\mathcal{M}_3^{\star}: shuttle(x, z) \rightarrow \exists u \ emp(x, z, u)
```

Data may be lost in the exchange through a mapping ${\mathcal M}$

- ▶ We would like to find a mapping \mathcal{M}^* that at least recovers sound data w.r.t. \mathcal{M}
 - $ightharpoonup \mathcal{M}^{\star}$ is called a recovery of \mathcal{M}

Example

Consider a mapping \mathcal{M} specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

```
\mathcal{M}_{1}^{\star}: shuttle(x,z) \rightarrow \exists u \exists v \ emp(x,u,v) \checkmark

\mathcal{M}_{2}^{\star}: shuttle(x,z) \rightarrow \exists u \ emp(x,u,z) \checkmark

\mathcal{M}_{3}^{\star}: shuttle(x,z) \rightarrow \exists u \ emp(x,z,u) \times
```

Example

Consider again mapping ${\mathcal M}$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

These mappings are recoveries of \mathcal{M} :

 \mathcal{M}_1^* : shuttle $(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)$

 \mathcal{M}_2^{\star} : shuttle $(x,z) \rightarrow \exists u \ emp(x,u,z)$

Example

Consider again mapping \mathcal{M} specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

These mappings are recoveries of \mathcal{M} :

 \mathcal{M}_1^* : shuttle $(x,z) \rightarrow \exists u \exists v \ emp(x,u,v)$ \mathcal{M}_2^{\star} : shuttle(x, z) $\rightarrow \exists u \ emp(x, u, z)$

Intuitively: \mathcal{M}_2^* is better than \mathcal{M}_1^*

Example

Consider again mapping $\mathcal M$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

These mappings are recoveries of \mathcal{M} :

 \mathcal{M}_1^* : shuttle $(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)$

 \mathcal{M}_2^{\star} : shuttle $(x,z) \rightarrow \exists u \ emp(x,u,z)$

 \mathcal{M}_4^{\star} : shuttle $(x, z) \rightarrow \exists u \ emp(x, u, z) \land u \neq z$

Intuitively: \mathcal{M}_2^\star is better than \mathcal{M}_1^\star

Example

Consider again mapping $\mathcal M$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

These mappings are recoveries of \mathcal{M} :

 \mathcal{M}_1^* : shuttle $(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)$

 \mathcal{M}_2^{\star} : shuttle $(x,z) \rightarrow \exists u \ emp(x,u,z)$

 \mathcal{M}_4^{\star} : shuttle $(x, z) \rightarrow \exists u \ emp(x, u, z) \land u \neq z$

Intuitively: \mathcal{M}_2^{\star} is better than \mathcal{M}_1^{\star}

 \mathcal{M}_4^\star is better than \mathcal{M}_2^\star and \mathcal{M}_1^\star

Example

Consider again mapping \mathcal{M} specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

These mappings are recoveries of \mathcal{M} :

 \mathcal{M}_1^{\star} : shuttle $(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)$ \mathcal{M}_{2}^{\star} : shuttle $(x,z) \rightarrow \exists u \ emp(x,u,z)$

 \mathcal{M}_{A}^{\star} : shuttle $(x, z) \rightarrow \exists u \ emp(x, u, z) \land u \neq z$

Intuitively: \mathcal{M}_2^* is better than \mathcal{M}_1^*

 \mathcal{M}_{4}^{\star} is better than \mathcal{M}_{2}^{\star} and \mathcal{M}_{1}^{\star}

We would like to find a recovery of \mathcal{M} that is better than any other recovery: Maximum recovery

The notion of recovery: Formalization

Definition (APR08)

Let \mathcal{M} be a mapping from \mathbf{S}_1 to \mathbf{S}_2 and \mathcal{M}^* a mapping from \mathbf{S}_2 to \mathbf{S}_1 . Then \mathcal{M}^* is a recovery of \mathcal{M} if:

for every instance I of \mathbf{S}_1 : $(I,I) \in \mathcal{M} \circ \mathcal{M}^*$

The notion of recovery: Formalization

Definition (APR08)

Let \mathcal{M} be a mapping from \mathbf{S}_1 to \mathbf{S}_2 and \mathcal{M}^* a mapping from \mathbf{S}_2 to \mathbf{S}_1 . Then \mathcal{M}^* is a recovery of \mathcal{M} if:

for every instance I of S_1 : $(I, I) \in \mathcal{M} \circ \mathcal{M}^*$

Example

Consider again mapping ${\mathcal M}$ specified by:

$$emp(x, y, z) \land y \neq z \rightarrow shuttle(x, z)$$

This mapping is not a recovery of \mathcal{M} :

$$\mathcal{M}_3^{\star}$$
: shuttle $(x,z) \rightarrow \exists u \ emp(x,z,u)$

The notion of recovery: Formalization

Example (Cont'd)

On the other hand, these mappings are recoveries of \mathcal{M} :

```
\mathcal{M}_{1}^{\star}: shuttle(x, z) \rightarrow \exists u \exists v \ emp(x, u, v)
\mathcal{M}_{2}^{\star}: shuttle(x, z) \rightarrow \exists u \ emp(x, u, z)
```

$$\mathcal{M}_2^\star$$
: shuttle $(x,z) \rightarrow \exists u \, emp(x,u,z)$

$$\mathcal{M}_{4}^{\star}$$
: shuttle $(x,z) \rightarrow \exists u \ emp(x,u,z) \land u \neq z$

Definition (APR08)

 \mathcal{M}^{\star} is a maximum recovery of \mathcal{M} if:

- $ightharpoonup \mathcal{M}^{\star}$ is a recovery of \mathcal{M}
- ▶ for every recovery \mathcal{M}' of \mathcal{M} : $\mathcal{M} \circ \mathcal{M}^* \subseteq \mathcal{M} \circ \mathcal{M}'$

A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

▶ How can we show that a notion of inverse is appropriate?

We have seen three notions of inversion for mappings.

▶ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

We have seen three notions of inversion for mappings.

▶ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

How close is a space of solution to a particular solution?

We have seen three notions of inversion for mappings.

▶ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

► How close is a space of solution to a particular solution? How close is Sol_{MoM*}(I) to I?

We have seen three notions of inversion for mappings.

▶ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

► How close is a space of solution to a particular solution? How close is Sol_{MoM*}(I) to I?

Simple approach: Compare the information that can be retrieved from I and $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$

To compare the information that can be retrieved from I and $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$: Compare Q(I) to certain $\mathcal{M} \circ \mathcal{M}^*(Q, I)$

To compare the information that can be retrieved from I and $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$: Compare Q(I) to $certain_{\mathcal{M} \circ \mathcal{M}^*}(Q, I)$

Observation

Let \mathcal{M} be a mapping from **S** to **T**, I an instance of **S**, Q a query over **S** and \mathcal{M}^* a recovery of \mathcal{M} :

$$\mathsf{certain}_{\mathcal{M} \circ \mathcal{M}^{\star}}(Q, I) \subseteq Q(I)$$

To compare the information that can be retrieved from I and $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$: Compare Q(I) to $certain_{\mathcal{M} \circ \mathcal{M}^*}(Q, I)$

Observation

Let \mathcal{M} be a mapping from **S** to **T**, I an instance of **S**, Q a query over **S** and \mathcal{M}^* a recovery of \mathcal{M} :

$$\operatorname{certain}_{\mathcal{M} \circ \mathcal{M}^*}(Q, I) \subseteq Q(I)$$

Information retrieved from $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$ is sound w.r.t. I.

To compare the information that can be retrieved from I and $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$: Compare Q(I) to $certain_{\mathcal{M} \circ \mathcal{M}^*}(Q,I)$

Observation

Let \mathcal{M} be a mapping from **S** to **T**, I an instance of **S**, Q a query over **S** and \mathcal{M}^* a recovery of \mathcal{M} :

$$\operatorname{certain}_{\mathcal{M} \circ \mathcal{M}^*}(Q, I) \subseteq Q(I)$$

Information retrieved from $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$ is sound w.r.t. I.

▶ Is certain_{$\mathcal{M} \circ \mathcal{M}^{\star}$} (Q, I) = Q(I)?

To compare the information that can be retrieved from I and $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$: Compare Q(I) to $certain_{\mathcal{M} \circ \mathcal{M}^*}(Q, I)$

Observation

Let \mathcal{M} be a mapping from **S** to **T**, I an instance of **S**, Q a query over **S** and \mathcal{M}^* a recovery of \mathcal{M} :

$$\operatorname{certain}_{\mathcal{M} \circ \mathcal{M}^*}(Q, I) \subseteq Q(I)$$

Information retrieved from $Sol_{\mathcal{M} \circ \mathcal{M}^*}(I)$ is sound w.r.t. I.

- ▶ Is certain $\mathcal{M} \circ \mathcal{M}^*(Q, I) = Q(I)$?
- ▶ Not always possible: $P(x,y) \rightarrow R(x)$ and Q(x,y) = P(x,y)

A fundamental property of maximum recoveries

Definition

 $ightharpoonup \mathcal{M}'$ recovers Q under \mathcal{M} if for every source instance I:

$$Q(I) = \operatorname{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q, I)$$

 $lackbox{ }Q$ can be recovered under ${\mathcal M}$ if the above mapping ${\mathcal M}'$ exists

A fundamental property of maximum recoveries

Definition

 \blacktriangleright \mathcal{M}' recovers Q under \mathcal{M} if for every source instance I:

$$Q(I) = \operatorname{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q, I)$$

ightharpoonup Q can be recovered under $\mathcal M$ if the above mapping $\mathcal M'$ exists

Theorem (APRR09)

Let \mathcal{M}^* be a maximum recovery of a mapping \mathcal{M} . If Q can be recovered under \mathcal{M} , then \mathcal{M}^* recovers Q under \mathcal{M} .

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of Fagin-inverses and quasi-inverses.

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

Example

Consider a mapping ${\mathcal M}$ specified by:

$$P(x,y) \wedge P(y,z) \rightarrow R(x,z) \wedge T(y)$$

 ${\cal M}$ has neither an inverse nor a quasi-inverse [FKPT07]. A maximum recovery of ${\cal M}$ is specified by:

$$\begin{array}{ccc} R(x,z) & \to & \exists y \ P(x,y) \land P(y,z) \\ T(y) & \to & \exists x \exists z \ P(x,y) \land P(y,z) \end{array}$$

Maximum recoveries strictly generalize Fagin-inverses

 ${\cal M}$ is closed-down on the left if it satisfies the following condition:

If J is a solution for I_2 and $I_1\subseteq I_2$, then J is a solution for I_1

The notion of Fagin-inverse is defined in [F06] focusing on these mappings.

Maximum recoveries strictly generalize Fagin-inverses

 ${\cal M}$ is closed-down on the left if it satisfies the following condition:

If J is a solution for I_2 and $I_1 \subseteq I_2$, then J is a solution for I_1

The notion of Fagin-inverse is defined in [F06] focusing on these mappings.

Theorem (APR08)

If \mathcal{M} is closed-down on the left and Fagin-invertible: \mathcal{M}^* is an inverse of \mathcal{M} iff \mathcal{M}^* is a maximum recovery of \mathcal{M} .

Maximum recoveries strictly generalize Fagin-inverses

 ${\cal M}$ is closed-down on the left if it satisfies the following condition:

If J is a solution for I_2 and $I_1 \subseteq I_2$, then J is a solution for I_1

The notion of Fagin-inverse is defined in [F06] focusing on these mappings.

Theorem (APR08)

If \mathcal{M} is closed-down on the left and Fagin-invertible: \mathcal{M}^* is an inverse of \mathcal{M} iff \mathcal{M}^* is a maximum recovery of \mathcal{M} .

A similar theorem can be proved for the notion of quasi-inverse.

Computing maximum recoveries

The simple process of "reversing the arrows" of st-tgds does not work properly

▶ For example, consider mapping specified by st-tgds $A(x) \rightarrow T(x)$ and $B(x) \rightarrow T(x)$

Computing maximum recoveries

The simple process of "reversing the arrows" of st-tgds does not work properly

▶ For example, consider mapping specified by st-tgds $A(x) \rightarrow T(x)$ and $B(x) \rightarrow T(x)$

We present an algorithm that is based on query rewriting.

▶ We can reuse the large body of work on query rewriting

Definition

Given a mapping \mathcal{M} and a target query Q: Query Q' is a rewriting over the source of Q if for every source instance I:

$$\mathsf{certain}_{\mathcal{M}}(Q,I) = Q'(I)$$

Computing maximum recoveries

Algorithm

Input : A mapping $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ is a set of

st-tgds

Output : A mapping $\mathcal{M}^* = (\mathbf{T}, \mathbf{S}, \Sigma^*)$ that is a maximum

recovery of ${\mathcal M}$

let $\Sigma^{\star} := \emptyset$ for every $\varphi(\bar{x}, \bar{y}) \to \exists \bar{z} \, \psi(\bar{x}, \bar{y})$ in Σ do compute a first-order logic formula $\alpha(\bar{x})$ that is a source rewriting of $\exists \bar{z} \, \psi(\bar{x}, \bar{z})$ under \mathcal{M} add dependency $\psi(\bar{x}, \bar{z}) \wedge \mathbf{C}(\bar{x}) \to \alpha(\bar{x})$ to Σ^{\star}

Complexity of the algorithm

Theorem (APR08, APR09)

There is an exponential time algorithm that, given a mapping \mathcal{M} specified by st-tgds, computes a maximum recovery of \mathcal{M} .

Complexity of the algorithm

Theorem (APR08, APR09)

There is an exponential time algorithm that, given a mapping \mathcal{M} specified by st-tgds, computes a maximum recovery of \mathcal{M} .

A few words about the language needed to express the maximum recovery:

- Output of the algorithm: CQ^{C(·)}-to-UCQ⁼ dependencies
- ▶ Predicate C(·), disjunction and equality are needed

Can we combine the composition and inverse operators?

▶ Is there a good language for both operators?

Can we combine the composition and inverse operators?

Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a Fagin-inverse nor a quasi-inverse nor a maximum recovery.

Can we combine the composition and inverse operators?

▶ Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a Fagin-inverse nor a quasi-inverse nor a maximum recovery.

Do we need yet another notion of inverse?

Can we combine the composition and inverse operators?

Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a Fagin-inverse nor a quasi-inverse nor a maximum recovery.

Do we need yet another notion of inverse?

▶ No, we need to revisit the semantics of mappings

What went wrong?

Key observation: A target instance of a mapping can be the source instance of another mapping.

► Sources instances may contain null values

What went wrong?

Key observation: A target instance of a mapping can be the source instance of another mapping.

► Sources instances may contain null values

Example

Consider a mapping \mathcal{M} specified by:

$$P(x,y) \rightarrow R(x,y)$$

 $P(x,x) \rightarrow T(x)$

The canonical universal solution for $I = \{P(n, a)\}$ under \mathcal{M} :

$$J^{\star} = \{R(n,a)\}$$

But J^* is not a *good* solution for I.

▶ It cannot represent the fact that if n is given value a, then T(a) should hold in the target.

A solution to the problem

We use conditional tables instead of the usual instances.

▶ What about complexity?

A solution to the problem

We use conditional tables instead of the usual instances.

▶ What about complexity?

Example

Consider again mapping ${\mathcal M}$ specified by:

$$P(x,y) \rightarrow R(x,y)$$

 $P(x,x) \rightarrow T(x)$

The following conditional table is a good solution for $I = \{P(n, a)\}$:

$$R(n,a)$$
 true $T(n)$ $n=a$

Can conditional tables be used in *real* data exchange systems?

Good news: We just need positive conditions

- Good solutions can be computed in polynomial time (data complexity)
- Certain answers for UCQ can be computed in polynomial time (data complexity)

Can conditional tables be used in *real* data exchange systems?

Good news: We just need positive conditions

- Good solutions can be computed in polynomial time (data complexity)
- Certain answers for UCQ can be computed in polynomial time (data complexity)

Theorem (APR11)

If instances are replaced by positive conditional tables:

- SO tgds are still the right language for the composition of mappings given by st-tgds
- Every mapping specified by an SO tgd admits a maximum recovery

Concluding remarks

- Composition and inverse operators are fundamental in metadata management
- ▶ The problem of composing schema mappings given by st-tgds is solved
- Considerable progress has been made on the problem of inverting schema mappings
- Combining these operators is an open issue
 - Some progress has been made
 - ▶ But we do not know whether there is a good language for both operators. Is there a reasonable language that is closed under both operators?

Bibliography

- [FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange: Semantics and Query Answering. ICDT 2003: 207-224
- [B03] P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. CIDR 2003
- [FKPT04] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing Schema Mappings: Second-Order Dependencies to the Rescue. PODS 2004: 83-94
- [FKPT05] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing schema mappings: Second-order dependencies to the rescue. TODS 30(4): 994-1055, 2005
- [F06] R. Fagin. Inverting schema mappings. PODS 2006: 50-59

Bibliography

- [FKPT07] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Quasi-inverses of schema mappings. PODS 2007: 123-132
- [APR08] M. Arenas, J. Pérez, C. Riveros. The recovery of a schema mapping: bringing exchanged data back. PODS 2008: 13-22
- [APRR09] M. Arenas, J. Pérez, J. Reutter, C. Riveros. Inverting Schema Mappings: Bridging the Gap between Theory and Practice. PVLDB 2(1): 1018-1029, 2009
- [APR09] M. Arenas, J. Pérez, C. Riveros: The recovery of a schema mapping: Bringing exchanged data back. TODS 34(4), 2009
- [APR11] M. Arenas, J. Pérez, J. Reutter. Data Exchange beyond Complete Data. To appear in PODS 2011.