
Schema Mapping Management in

Data Exchange Systems

Marcelo Arenas

Department of Computer Science
Pontificia Universidad Católica de Chile

This is joint work with Jorge Pérez, Juan Reutter and Cristian Riveros

M. Arenas – Schema Mapping Management in Data Exchange Systems 1 / 62

The problem of data exchange

Given: A source schema S, a target schema T and a specification
ΣST of the relationship between these schemas

Data exchange: Problem of materializing an instance of T given
an instance of S

◮ Target instance should reflect the source data as accurately as
possible, given the constraints imposed by ΣST and T

◮ It should be efficiently computable

◮ It should allow one to evaluate queries on the target in a way
that is semantically consistent with the source data

M. Arenas – Schema Mapping Management in Data Exchange Systems 2 / 62

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Schema Mapping Management in Data Exchange Systems 3 / 62

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Schema Mapping Management in Data Exchange Systems 3 / 62

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Schema Mapping Management in Data Exchange Systems 3 / 62

Data exchange in a picture

Schema TSchema S

ΣST

M. Arenas – Schema Mapping Management in Data Exchange Systems 3 / 62

Data exchange in a picture

Query Q

Schema S

ΣST

Schema T

M. Arenas – Schema Mapping Management in Data Exchange Systems 3 / 62

Data exchange: Some fundamental questions

Why is data exchange an interesting problem?

◮ Is it a difficult problem?

What are the challenges in the area?

◮ What is a good language for specifying the relationship
between source and target data?

◮ What is a good instance to materialize? Why is it good?

◮ What does it mean to answer a queries over target data?

◮ How do we answer queries over target data? Can we do this
efficiently?

M. Arenas – Schema Mapping Management in Data Exchange Systems 4 / 62

Data exchange in relational databases

It has been extensively studied in the relational world.

◮ It has also been implemented: IBM Clio

Relational data exchange setting:

◮ Source and target schemas: Relational schemas

◮ Relationship between source and target schemas:
Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

◮ Efficient algorithms for materializing target instances and for
answering queries over the target schema have been developed

M. Arenas – Schema Mapping Management in Data Exchange Systems 5 / 62

Schema mapping: The key component in relational data

exchange

Schema mapping: M = (S,T,ΣST)

◮ S and T are disjoint relational schemas

◮ ΣST is a finite set of st-tgds:

∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄))

ϕ(x̄ , ȳ): conjunction of relational atomic formulas over S

ψ(x̄ , z̄): conjunction of relational atomic formulas over T

M. Arenas – Schema Mapping Management in Data Exchange Systems 6 / 62

Relational schema mappings: An example

Example

◮ S: book(title, author name, affiliation)

◮ T: writer(name, book title, year)

◮ ΣST:

∀x1∀x2∀y1 (book(x1, x2, y1) → ∃z1 writer(x2, x1, z1))

M. Arenas – Schema Mapping Management in Data Exchange Systems 7 / 62

Relational schema mappings: An example

Example

◮ S: book(title, author name, affiliation)

◮ T: writer(name, book title, year)

◮ ΣST:

∀x1∀x2∀y1 (book(x1, x2, y1) → ∃z1 writer(x2, x1, z1))

Note

We omit universal quantifiers in st-tgds:

book(x1, x2, y1) → ∃z1 writer(x2, x1, z1)

M. Arenas – Schema Mapping Management in Data Exchange Systems 7 / 62

Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)

M. Arenas – Schema Mapping Management in Data Exchange Systems 8 / 62

Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)

Notation

J is a solution for I under M

◮ SolM(I): Set of solutions for I under M

M. Arenas – Schema Mapping Management in Data Exchange Systems 8 / 62

The notion of solution: First example

Example

Consider mapping M specified by:

book(x1, x2, y1) → ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

M. Arenas – Schema Mapping Management in Data Exchange Systems 9 / 62

The notion of solution: First example

Example

Consider mapping M specified by:

book(x1, x2, y1) → ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Solution J1:
writer name book title year

Hungerford Algebra 1974
Royden Real Analysis 1988

M. Arenas – Schema Mapping Management in Data Exchange Systems 9 / 62

The notion of solution: First example

Example

Consider mapping M specified by:

book(x1, x2, y1) → ∃z1 writer(x2, x1, z1)

Given I :
book title author name affiliation

Algebra Hungerford U. Washington
Real Analysis Royden Stanford

Solution J1:
writer name book title year

Hungerford Algebra 1974
Royden Real Analysis 1988

Solution J2:
writer name book title year

Hungerford Algebra n1

Royden Real Analysis n2

M. Arenas – Schema Mapping Management in Data Exchange Systems 9 / 62

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

M. Arenas – Schema Mapping Management in Data Exchange Systems 10 / 62

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

M. Arenas – Schema Mapping Management in Data Exchange Systems 10 / 62

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

M. Arenas – Schema Mapping Management in Data Exchange Systems 10 / 62

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

M. Arenas – Schema Mapping Management in Data Exchange Systems 10 / 62

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)

M. Arenas – Schema Mapping Management in Data Exchange Systems 10 / 62

The notion of solution: Second example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)

J5: dept(Peter, n1), dept(Peter,n2)

M. Arenas – Schema Mapping Management in Data Exchange Systems 10 / 62

Canonical universal solution

Question

What is a good instance to materialize?

M. Arenas – Schema Mapping Management in Data Exchange Systems 11 / 62

Canonical universal solution

Question

What is a good instance to materialize?

Algorithm

Input : (S,T,ΣST) and an instance I of S

Output : Canonical universal solution J⋆ for I under M

let J⋆ := empty instance of T

for every ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄) in ΣST do

for every ā, b̄ such that I satisfies ϕ(ā, b̄) do

create a fresh tuple n̄ of pairwise distinct null values
insert ψ(ā, n̄) into J⋆

M. Arenas – Schema Mapping Management in Data Exchange Systems 11 / 62

Canonical universal solution: Example

Example

Consider mapping M specified by dependency:

employee(x) → ∃y dept(x , y)

Canonical universal solution for I = {employee(Peter), employee(John)}:

◮ For a = Peter do

◮ Create a fresh null value n1

◮ Insert dept(Peter , n1) into J⋆

◮ For a = John do

◮ Create a fresh null value n2

◮ Insert dept(John, n2) into J⋆

Result: J⋆ = {dept(Peter , n1), dept(John, n2)}

M. Arenas – Schema Mapping Management in Data Exchange Systems 12 / 62

Query answering in data exchange

Given: Mapping M, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?

M. Arenas – Schema Mapping Management in Data Exchange Systems 13 / 62

Query answering in data exchange

Given: Mapping M, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?

Definition (Certain answers)

certainM(Q, I) =
⋂

J is a solution for I under M

Q(J)

M. Arenas – Schema Mapping Management in Data Exchange Systems 13 / 62

Certain answers: Example

Example

Consider mapping M specified by:

employee(x) → ∃y dept(x , y)

Given instance I = {employee(Peter)}:

certainM(∃y dept(x , y), I) = {Peter}
certainM(dept(x , y), I) = ∅

M. Arenas – Schema Mapping Management in Data Exchange Systems 14 / 62

Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions

M. Arenas – Schema Mapping Management in Data Exchange Systems 15 / 62

Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]: Query Rewriting

Given a mapping M and a target query Q, compute a query
Q⋆ such that for every source instance I with canonical
universal solution J⋆:

certainM(Q, I) = Q⋆(J⋆)

M. Arenas – Schema Mapping Management in Data Exchange Systems 15 / 62

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I) = Q⋆(J⋆)

M. Arenas – Schema Mapping Management in Data Exchange Systems 16 / 62

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I) = Q⋆(J⋆)

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:

Q⋆(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧ Q(x1, . . . , xm)

M. Arenas – Schema Mapping Management in Data Exchange Systems 16 / 62

Query rewriting over the canonical solution: Example

Example

Let M be specified by:

employee(x) → ∃y dept(x , y)

Let Q1(x) = ∃y dept(x , y) and Q2(x , y) = dept(x , y):

Q⋆

1 (x) = C(x) ∧ ∃y dept(x , y)

Q⋆

2 (x , y) = C(x) ∧ C(y) ∧ dept(x , y)

Let I = {employee(Peter), employee(John)}:

J⋆ = {dept(Peter , n1), dept(John, n2)}

Then:

certainM(Q1, I) = {Peter , John} Q⋆

1 (J⋆) = {Peter , John}
certainM(Q2, I) = ∅ Q⋆

2 (J⋆) = ∅

M. Arenas – Schema Mapping Management in Data Exchange Systems 17 / 62

Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered
to be fixed.

◮ Is this a reasonable assumption?

Corollary (FKMP03)

For mappings given by st-tgds, certain answers for UCQ can be
computed in polynomial time (data complexity)

M. Arenas – Schema Mapping Management in Data Exchange Systems 18 / 62

Relational data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mappings: Precise syntax and semantics
◮ Definition of the notion of solution

◮ Identification of good solutions

◮ Polynomial time algorithms for materializing good solutions

◮ Definition of target queries: Precise semantics

◮ Polynomial time algorithms for computing certain answers for
UCQ

M. Arenas – Schema Mapping Management in Data Exchange Systems 19 / 62

Relational data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mappings: Precise syntax and semantics
◮ Definition of the notion of solution

◮ Identification of good solutions

◮ Polynomial time algorithms for materializing good solutions

◮ Definition of target queries: Precise semantics

◮ Polynomial time algorithms for computing certain answers for
UCQ

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general

M. Arenas – Schema Mapping Management in Data Exchange Systems 19 / 62

Can we reuse schema mappings?

ΣSU

ΣST

S T U

ΣTU

M. Arenas – Schema Mapping Management in Data Exchange Systems 20 / 62

Can we reuse schema mappings?

ΣSU

ΣST

S T U

ΣTU

M. Arenas – Schema Mapping Management in Data Exchange Systems 20 / 62

Can we reuse schema mappings?

ΣSU?

ΣST

S T U

ΣTU

M. Arenas – Schema Mapping Management in Data Exchange Systems 20 / 62

Can we reuse schema mappings?

ΣSU?

ΣST

S T U

ΣTU

We need some operators for schema mappings

M. Arenas – Schema Mapping Management in Data Exchange Systems 20 / 62

Can we reuse schema mappings?

ΣSU = ΣST ◦ ΣTU

ΣST

S T U

ΣTU

We need some operators for schema mappings

◮ Composition in the above case

M. Arenas – Schema Mapping Management in Data Exchange Systems 20 / 62

Metadata management

Contributions mentioned in the previous slides are just a first step
towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design
and integration of complex application artifacts, but also their
subsequent manipulation.

M. Arenas – Schema Mapping Management in Data Exchange Systems 21 / 62

Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata

management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

◮ What other operators are needed?

M. Arenas – Schema Mapping Management in Data Exchange Systems 22 / 62

More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Schema Mapping Management in Data Exchange Systems 23 / 62

More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

M. Arenas – Schema Mapping Management in Data Exchange Systems 23 / 62

More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

ΣVS = Σ−1
SV

M. Arenas – Schema Mapping Management in Data Exchange Systems 23 / 62

More operators are needed

ΣVS = Σ−1
SV

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST

An inverse operator is needed in this case

M. Arenas – Schema Mapping Management in Data Exchange Systems 23 / 62

More operators are needed

Σ−1
SV ◦ ΣST

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
VS ◦ ΣST) ◦ ΣTU

ΣVS = Σ−1
SV

An inverse operator is needed in this case

◮ Combined with the composition operator

M. Arenas – Schema Mapping Management in Data Exchange Systems 23 / 62

More operators are needed

Σ−1
SV ◦ ΣST

ΣST

S T U

ΣTU

V

ΣSV

(Σ−1
SV ◦ ΣST) ◦ ΣTU

ΣVS = Σ−1
SV

An inverse operator is needed in this case

◮ Combined with the composition operator

M. Arenas – Schema Mapping Management in Data Exchange Systems 23 / 62

Outline of the talk

◮ Composition operator

◮ Inverse operator

◮ Combination of both operators

◮ Key ingredient: Conditional tables

M. Arenas – Schema Mapping Management in Data Exchange Systems 24 / 62

The composition operator

Question

What is the semantics of the composition operator?

M. Arenas – Schema Mapping Management in Data Exchange Systems 25 / 62

The composition operator

Question

What is the semantics of the composition operator?

Notation

We can view a mapping M as a set of pairs:

(I , J) ∈ M iff J ∈ SolM(I)

M. Arenas – Schema Mapping Management in Data Exchange Systems 25 / 62

The composition operator

Question

What is the semantics of the composition operator?

Notation

We can view a mapping M as a set of pairs:

(I , J) ∈ M iff J ∈ SolM(I)

Definition (FKPT04)

Let M12 be a mapping from S1 to S2, and M23 a mapping from
S2 to S3:

M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈ M23}

M. Arenas – Schema Mapping Management in Data Exchange Systems 25 / 62

Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

M. Arenas – Schema Mapping Management in Data Exchange Systems 26 / 62

Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

Example (FKPT04)

Consider mappings:

M12 : takes(n, c) → takes1(n, c)

takes(n, c) → ∃s student(n, s)

M23 : student(n, s) ∧ takes1(n, c) → enrolled(s, c)

M. Arenas – Schema Mapping Management in Data Exchange Systems 26 / 62

Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

Example (FKPT04)

Consider mappings:

M12 : takes(n, c) → takes1(n, c)

takes(n, c) → ∃s student(n, s)

M23 : student(n, s) ∧ takes1(n, c) → enrolled(s, c)

Does the following st-tgd express the composition?

takes(n, c) → ∃y enrolled(y , c)

M. Arenas – Schema Mapping Management in Data Exchange Systems 26 / 62

Expressing the composition of mappings

Example (Cont’d)

This is the right dependency:

∀n∃y∀c (takes(n, c) → enrolled(y , c))

M. Arenas – Schema Mapping Management in Data Exchange Systems 27 / 62

Expressing the composition of mappings

Example (Cont’d)

This is the right dependency:

∀n∃y∀c (takes(n, c) → enrolled(y , c))

Is first-order logic enough?

◮ Complexity theory can help us to answer this question

M. Arenas – Schema Mapping Management in Data Exchange Systems 27 / 62

Expressing the composition of mappings: A complexity

argument

How difficult is the composition problem?

◮ Fix mappings M12 and M23

◮ Problem: Decide whether (I1, I3) ∈ M12 ◦M23

If M12 ◦M23 is defined by a set of first-order sentences, then the
composition problem can be solved efficiently: It is in AC0

◮ AC0 (PTIME

M. Arenas – Schema Mapping Management in Data Exchange Systems 28 / 62

Expressing the composition of mappings: A complexity

argument

How difficult is the composition problem?

◮ Fix mappings M12 and M23

◮ Problem: Decide whether (I1, I3) ∈ M12 ◦M23

If M12 ◦M23 is defined by a set of first-order sentences, then the
composition problem can be solved efficiently: It is in AC0

◮ AC0 (PTIME

But the composition problem is not easy: It can be NP-hard

◮ AC0 (PTIME ⊆ NP

M. Arenas – Schema Mapping Management in Data Exchange Systems 28 / 62

Expressing the composition of mappings: A complexity

argument

Let see a difficult case taken from [FKPT04].

M12 is specified by:

node(x) → ∃y coloring(x , y)

edge(x , y) → edge′(x , y)

M23 is specified by:

edge′(x , y) ∧ coloring (x , u) ∧ coloring(y , u) → error (x , y)

coloring (x , y) → color (y)

M. Arenas – Schema Mapping Management in Data Exchange Systems 29 / 62

Expressing the composition of mappings: A complexity

argument

What is the complexity of verifying whether (I1, I3) ∈ M12 ◦M23?

M. Arenas – Schema Mapping Management in Data Exchange Systems 30 / 62

Expressing the composition of mappings: A complexity

argument

What is the complexity of verifying whether (I1, I3) ∈ M12 ◦M23?

Given a graph G = (N,E), consider instances I1, I3:

node in I1 : N
edge in I1 : E
color in I3 : {1, 2, 3}
error in I3 : ∅

Then: G is 3-colorable iff (I1, I3) ∈ M12 ◦M23

M. Arenas – Schema Mapping Management in Data Exchange Systems 30 / 62

Expressing the composition of mappings

Back to our initial question:

What is the right language for expressing the composition?

M. Arenas – Schema Mapping Management in Data Exchange Systems 31 / 62

Expressing the composition of mappings

Back to our initial question:

What is the right language for expressing the composition?

Complexity theory can help us again:

◮ NP-hardness and Fagin’s theorem: We need at least
existential second-order logic

M. Arenas – Schema Mapping Management in Data Exchange Systems 31 / 62

Expressing the composition of mappings

Back to our initial question:

What is the right language for expressing the composition?

Complexity theory can help us again:

◮ NP-hardness and Fagin’s theorem: We need at least
existential second-order logic

◮ Good news: There is a nice second-order language for
expressing the composition

M. Arenas – Schema Mapping Management in Data Exchange Systems 31 / 62

SO tgds: The right language for expressing the

composition of mappings

Example

Consider again the mappings:

M12 : takes(n, c) → takes1(n, c)

takes(n, c) → ∃s student(n, s)

M23 : student(n, s) ∧ takes1(n, c) → enrolled(s, c)

The following SO tgd defines the composition:

∃f ∀n∀c (takes(n, c) → enrolled(f (n), c))

M. Arenas – Schema Mapping Management in Data Exchange Systems 32 / 62

SO tgds: The right language for expressing the

composition of mappings

Example

Consider again mappings M12:

node(x) → ∃y coloring(x , y)

edge(x , y) → edge′(x , y)

and M23:

edge′(x , y) ∧ coloring (x , u) ∧ coloring(y , u) → error (x , y)

coloring (x , y) → color (y)

M. Arenas – Schema Mapping Management in Data Exchange Systems 33 / 62

SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following SO tgd defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]

M. Arenas – Schema Mapping Management in Data Exchange Systems 34 / 62

SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following SO tgd defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]

This example shows the main ingredients of SO tgds:

◮ Predicates including terms: color (f (x))

◮ Equality between terms: f (x) = f (y)

M. Arenas – Schema Mapping Management in Data Exchange Systems 34 / 62

SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

M. Arenas – Schema Mapping Management in Data Exchange Systems 35 / 62

SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can
be specified by an SO tgd

M. Arenas – Schema Mapping Management in Data Exchange Systems 35 / 62

SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding composition

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can
be specified by an SO tgd

◮ There exists an exponential time algorithm that computes
such SO tgds

M. Arenas – Schema Mapping Management in Data Exchange Systems 35 / 62

SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd

M. Arenas – Schema Mapping Management in Data Exchange Systems 36 / 62

SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd

But not only that, SO tgds are exactly the right language:

Theorem (FKPT05)

Every SO tgd defines the composition of a finite number of
mappings, each defined by a finite set of st-tgds.

M. Arenas – Schema Mapping Management in Data Exchange Systems 36 / 62

The inverse operator

Schema TSchema S

ΣST

M. Arenas – Schema Mapping Management in Data Exchange Systems 37 / 62

The inverse operator

Schema TSchema S

ΣST

M. Arenas – Schema Mapping Management in Data Exchange Systems 37 / 62

The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

We consider three notions of inverse here:

◮ Fagin-inverse

◮ Quasi-inverse

◮ Maximum recovery

M. Arenas – Schema Mapping Management in Data Exchange Systems 38 / 62

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

M. Arenas – Schema Mapping Management in Data Exchange Systems 39 / 62

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I) | I is an instance of S}?

M. Arenas – Schema Mapping Management in Data Exchange Systems 39 / 62

The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I) | I is an instance of S}?

For mapping specified by st-tgds, IdS is not the right notion.

◮ IdS = {(I1, I2) | I1, I2 are instances of S and I1 ⊆ I2}

M. Arenas – Schema Mapping Management in Data Exchange Systems 39 / 62

The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, and M⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse of M if:

M◦M⋆ = IdS1

M. Arenas – Schema Mapping Management in Data Exchange Systems 40 / 62

The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, and M⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse of M if:

M◦M⋆ = IdS1

Example

Consider mapping M specified by:

A(x) → R(x) ∧ ∃y S(x , y)

Then the following are Fagin-inverses of M:

M⋆

1 : R(x) → A(x)
M⋆

2 : S(x , y) → A(x)

M. Arenas – Schema Mapping Management in Data Exchange Systems 40 / 62

Is Fagin-inverse the right notion of inverse for mappings?

On the positive side: It is a natural notion

◮ With good computational properties

On the negative side: A mapping specified by st-tgds is not
guaranteed to admit a Fagin-inverse

◮ For example: Mapping specified by A(x , y) → R(x) does not
admit a Fagin-inverse

In fact: This notion turns out to be rather restrictive, as it is rare
that a schema mapping possesses a Fagin-inverse.

M. Arenas – Schema Mapping Management in Data Exchange Systems 41 / 62

Is Fagin-inverse the right notion of inverse for mappings?

The notion of quasi-inverse was introduced in [FKPT07] to
overcome this limitation.

◮ The idea is to relax the notion of Fagin-inverse by not
differentiating between source instances that are equivalent
for data exchange purposes

Numerous non-Fagin-invertible mappings possess natural and
useful quasi-inverses.

◮ But there are still simple mappings specified by st-tgds that
have no quasi-inverse

The notion of maximum recovery overcome this limitation.

M. Arenas – Schema Mapping Management in Data Exchange Systems 42 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆

3 : shuttle(x , z) → ∃u emp(x , z, u)

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆

3 : shuttle(x , z) → ∃u emp(x , z, u) ×

M. Arenas – Schema Mapping Management in Data Exchange Systems 43 / 62

Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

M. Arenas – Schema Mapping Management in Data Exchange Systems 44 / 62

Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

Intuitively: M⋆

2 is better than M⋆

1

M. Arenas – Schema Mapping Management in Data Exchange Systems 44 / 62

Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M. Arenas – Schema Mapping Management in Data Exchange Systems 44 / 62

Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M⋆

4 is better than M⋆

2 and M⋆

1

M. Arenas – Schema Mapping Management in Data Exchange Systems 44 / 62

Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M⋆

4 is better than M⋆

2 and M⋆

1

We would like to find a recovery of M that is better than any
other recovery: Maximum recovery

M. Arenas – Schema Mapping Management in Data Exchange Systems 44 / 62

The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I) ∈ M ◦M⋆

M. Arenas – Schema Mapping Management in Data Exchange Systems 45 / 62

The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I) ∈ M ◦M⋆

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

This mapping is not a recovery of M:

M⋆

3: shuttle(x , z) → ∃u emp(x , z , u)

M. Arenas – Schema Mapping Management in Data Exchange Systems 45 / 62

The notion of recovery: Formalization

Example (Cont’d)

On the other hand, these mappings are recoveries of M:

M⋆

1: shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2: shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4: shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

M. Arenas – Schema Mapping Management in Data Exchange Systems 46 / 62

The notion of maximum recovery

M

I

M. Arenas – Schema Mapping Management in Data Exchange Systems 47 / 62

The notion of maximum recovery

M

M⋆

1

I

M. Arenas – Schema Mapping Management in Data Exchange Systems 47 / 62

The notion of maximum recovery

M⋆

2

M

M⋆

1

I

M. Arenas – Schema Mapping Management in Data Exchange Systems 47 / 62

The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

M. Arenas – Schema Mapping Management in Data Exchange Systems 47 / 62

The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

Definition (APR08)

M⋆ is a maximum recovery of M if:

◮ M⋆ is a recovery of M

◮ for every recovery M′ of M: M◦M⋆ ⊆ M◦M′

M. Arenas – Schema Mapping Management in Data Exchange Systems 47 / 62

A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?

M. Arenas – Schema Mapping Management in Data Exchange Systems 48 / 62

A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

M. Arenas – Schema Mapping Management in Data Exchange Systems 48 / 62

A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

◮ How close is a space of solution to a particular solution?

M. Arenas – Schema Mapping Management in Data Exchange Systems 48 / 62

A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

◮ How close is a space of solution to a particular solution? How
close is SolM◦M⋆(I) to I?

M. Arenas – Schema Mapping Management in Data Exchange Systems 48 / 62

A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

◮ How close is a space of solution to a particular solution? How
close is SolM◦M⋆(I) to I?

Simple approach: Compare the information that can be retrieved
from I and SolM◦M⋆(I)

M. Arenas – Schema Mapping Management in Data Exchange Systems 48 / 62

A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I): Compare Q(I) to certainM◦M⋆(Q, I)

M. Arenas – Schema Mapping Management in Data Exchange Systems 49 / 62

A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I): Compare Q(I) to certainM◦M⋆(Q, I)

Observation

Let M be a mapping from S to T, I an instance of S, Q a query
over S and M⋆ a recovery of M:

certainM◦M⋆(Q, I) ⊆ Q(I)

M. Arenas – Schema Mapping Management in Data Exchange Systems 49 / 62

A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I): Compare Q(I) to certainM◦M⋆(Q, I)

Observation

Let M be a mapping from S to T, I an instance of S, Q a query
over S and M⋆ a recovery of M:

certainM◦M⋆(Q, I) ⊆ Q(I)

Information retrieved from SolM◦M⋆(I) is sound w.r.t. I .

M. Arenas – Schema Mapping Management in Data Exchange Systems 49 / 62

A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I): Compare Q(I) to certainM◦M⋆(Q, I)

Observation

Let M be a mapping from S to T, I an instance of S, Q a query
over S and M⋆ a recovery of M:

certainM◦M⋆(Q, I) ⊆ Q(I)

Information retrieved from SolM◦M⋆(I) is sound w.r.t. I .

◮ Is certainM◦M⋆(Q, I) = Q(I)?

M. Arenas – Schema Mapping Management in Data Exchange Systems 49 / 62

A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I): Compare Q(I) to certainM◦M⋆(Q, I)

Observation

Let M be a mapping from S to T, I an instance of S, Q a query
over S and M⋆ a recovery of M:

certainM◦M⋆(Q, I) ⊆ Q(I)

Information retrieved from SolM◦M⋆(I) is sound w.r.t. I .

◮ Is certainM◦M⋆(Q, I) = Q(I)?

◮ Not always possible: P(x , y) → R(x) and Q(x , y) = P(x , y)

M. Arenas – Schema Mapping Management in Data Exchange Systems 49 / 62

A fundamental property of maximum recoveries

Definition

◮ M′ recovers Q under M if for every source instance I :

Q(I) = certainM◦M′(Q, I)

◮ Q can be recovered under M if the above mapping M′ exists

M. Arenas – Schema Mapping Management in Data Exchange Systems 50 / 62

A fundamental property of maximum recoveries

Definition

◮ M′ recovers Q under M if for every source instance I :

Q(I) = certainM◦M′(Q, I)

◮ Q can be recovered under M if the above mapping M′ exists

Theorem (APRR09)

Let M⋆ be a maximum recovery of a mapping M. If Q can be
recovered under M, then M⋆ recovers Q under M.

M. Arenas – Schema Mapping Management in Data Exchange Systems 50 / 62

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

M. Arenas – Schema Mapping Management in Data Exchange Systems 51 / 62

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

M. Arenas – Schema Mapping Management in Data Exchange Systems 51 / 62

On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

Example

Consider a mapping M specified by:

P(x , y) ∧ P(y , z) → R(x , z) ∧ T (y)

M has neither an inverse nor a quasi-inverse [FKPT07]. A maximum
recovery of M is specified by:

R(x , z) → ∃y P(x , y) ∧ P(y , z)

T (y) → ∃x∃z P(x , y) ∧ P(y , z)

M. Arenas – Schema Mapping Management in Data Exchange Systems 51 / 62

Maximum recoveries strictly generalize Fagin-inverses

M is closed-down on the left if it satisfies the following condition:

If J is a solution for I2 and I1 ⊆ I2, then J is a solution for I1

The notion of Fagin-inverse is defined in [F06] focusing on these
mappings.

M. Arenas – Schema Mapping Management in Data Exchange Systems 52 / 62

Maximum recoveries strictly generalize Fagin-inverses

M is closed-down on the left if it satisfies the following condition:

If J is a solution for I2 and I1 ⊆ I2, then J is a solution for I1

The notion of Fagin-inverse is defined in [F06] focusing on these
mappings.

Theorem (APR08)

If M is closed-down on the left and Fagin-invertible: M⋆ is an
inverse of M iff M⋆ is a maximum recovery of M.

M. Arenas – Schema Mapping Management in Data Exchange Systems 52 / 62

Maximum recoveries strictly generalize Fagin-inverses

M is closed-down on the left if it satisfies the following condition:

If J is a solution for I2 and I1 ⊆ I2, then J is a solution for I1

The notion of Fagin-inverse is defined in [F06] focusing on these
mappings.

Theorem (APR08)

If M is closed-down on the left and Fagin-invertible: M⋆ is an
inverse of M iff M⋆ is a maximum recovery of M.

A similar theorem can be proved for the notion of quasi-inverse.

M. Arenas – Schema Mapping Management in Data Exchange Systems 52 / 62

Computing maximum recoveries

The simple process of “reversing the arrows” of st-tgds does not
work properly

◮ For example, consider mapping specified by st-tgds
A(x) → T (x) and B(x) → T (x)

M. Arenas – Schema Mapping Management in Data Exchange Systems 53 / 62

Computing maximum recoveries

The simple process of “reversing the arrows” of st-tgds does not
work properly

◮ For example, consider mapping specified by st-tgds
A(x) → T (x) and B(x) → T (x)

We present an algorithm that is based on query rewriting.

◮ We can reuse the large body of work on query rewriting

Definition

Given a mapping M and a target query Q: Query Q ′ is a rewriting
over the source of Q if for every source instance I :

certainM(Q, I) = Q ′(I)

M. Arenas – Schema Mapping Management in Data Exchange Systems 53 / 62

Computing maximum recoveries

Algorithm

Input : A mapping M = (S,T,Σ), where Σ is a set of
st-tgds

Output : A mapping M⋆ = (T,S,Σ⋆) that is a maximum
recovery of M

let Σ⋆ := ∅
for every ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , ȳ) in Σ do

compute a first-order logic formula α(x̄) that is
a source rewriting of ∃z̄ ψ(x̄ , z̄) under M

add dependency ψ(x̄ , z̄) ∧ C(x̄) → α(x̄) to Σ⋆

M. Arenas – Schema Mapping Management in Data Exchange Systems 54 / 62

Complexity of the algorithm

Theorem (APR08,APR09)

There is an exponential time algorithm that, given a mapping M
specified by st-tgds, computes a maximum recovery of M.

M. Arenas – Schema Mapping Management in Data Exchange Systems 55 / 62

Complexity of the algorithm

Theorem (APR08,APR09)

There is an exponential time algorithm that, given a mapping M
specified by st-tgds, computes a maximum recovery of M.

A few words about the language needed to express the maximum
recovery:

◮ Output of the algorithm: CQC(·)-to-UCQ= dependencies

◮ Predicate C(·), disjunction and equality are needed

M. Arenas – Schema Mapping Management in Data Exchange Systems 55 / 62

We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

M. Arenas – Schema Mapping Management in Data Exchange Systems 56 / 62

We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a
Fagin-inverse nor a quasi-inverse nor a maximum recovery.

M. Arenas – Schema Mapping Management in Data Exchange Systems 56 / 62

We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a
Fagin-inverse nor a quasi-inverse nor a maximum recovery.

Do we need yet another notion of inverse?

M. Arenas – Schema Mapping Management in Data Exchange Systems 56 / 62

We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a
Fagin-inverse nor a quasi-inverse nor a maximum recovery.

Do we need yet another notion of inverse?

◮ No, we need to revisit the semantics of mappings

M. Arenas – Schema Mapping Management in Data Exchange Systems 56 / 62

What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values

M. Arenas – Schema Mapping Management in Data Exchange Systems 57 / 62

What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values

Example

Consider a mapping M specified by:

P(x , y) → R(x , y)

P(x , x) → T (x)

The canonical universal solution for I = {P(n, a)} under M:

J⋆ = {R(n, a)}

But J⋆ is not a good solution for I .

◮ It cannot represent the fact that if n is given value a, then T (a)
should hold in the target.

M. Arenas – Schema Mapping Management in Data Exchange Systems 57 / 62

A solution to the problem

We use conditional tables instead of the usual instances.

◮ What about complexity?

M. Arenas – Schema Mapping Management in Data Exchange Systems 58 / 62

A solution to the problem

We use conditional tables instead of the usual instances.

◮ What about complexity?

Example

Consider again mapping M specified by:

P(x , y) → R(x , y)

P(x , x) → T (x)

The following conditional table is a good solution for I = {P(n, a)}:

R(n, a) true
T (n) n = a

M. Arenas – Schema Mapping Management in Data Exchange Systems 58 / 62

Can conditional tables be used in real data exchange

systems?

Good news: We just need positive conditions

◮ Good solutions can be computed in polynomial time (data
complexity)

◮ Certain answers for UCQ can be computed in polynomial
time (data complexity)

M. Arenas – Schema Mapping Management in Data Exchange Systems 59 / 62

Can conditional tables be used in real data exchange

systems?

Good news: We just need positive conditions

◮ Good solutions can be computed in polynomial time (data
complexity)

◮ Certain answers for UCQ can be computed in polynomial
time (data complexity)

Theorem (APR11)

If instances are replaced by positive conditional tables:

◮ SO tgds are still the right language for the composition of
mappings given by st-tgds

◮ Every mapping specified by an SO tgd admits a maximum
recovery

M. Arenas – Schema Mapping Management in Data Exchange Systems 59 / 62

Concluding remarks

◮ Composition and inverse operators are fundamental in
metadata management

◮ The problem of composing schema mappings given by st-tgds
is solved

◮ Considerable progress has been made on the problem of
inverting schema mappings

◮ Combining these operators is an open issue

◮ Some progress has been made

◮ But we do not know whether there is a good language for both
operators. Is there a reasonable language that is closed under
both operators?

M. Arenas – Schema Mapping Management in Data Exchange Systems 60 / 62

Bibliography

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange:
Semantics and Query Answering. ICDT 2003: 207-224

[B03] P. A. Bernstein. Applying Model Management to Classical Meta
Data Problems. CIDR 2003

[FKPT04] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing Schema
Mappings: Second-Order Dependencies to the Rescue. PODS
2004: 83-94

[FKPT05] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Composing schema
mappings: Second-order dependencies to the rescue. TODS 30(4):
994-1055, 2005

[F06] R. Fagin. Inverting schema mappings. PODS 2006: 50-59

M. Arenas – Schema Mapping Management in Data Exchange Systems 61 / 62

Bibliography

[FKPT07] R. Fagin, P. G. Kolaitis, L. Popa, W.-C. Tan. Quasi-inverses of
schema mappings. PODS 2007: 123-132

[APR08] M. Arenas, J. Pérez, C. Riveros. The recovery of a schema map-
ping: bringing exchanged data back. PODS 2008: 13-22

[APRR09] M. Arenas, J. Pérez, J. Reutter, C. Riveros. Inverting Schema
Mappings: Bridging the Gap between Theory and Practice. PVLDB
2(1): 1018-1029, 2009

[APR09] M. Arenas, J. Pérez, C. Riveros: The recovery of a schema map-
ping: Bringing exchanged data back. TODS 34(4), 2009

[APR11] M. Arenas, J. Pérez, J. Reutter. Data Exchange beyond Complete
Data. To appear in PODS 2011.

M. Arenas – Schema Mapping Management in Data Exchange Systems 62 / 62

