XML Data Exchange: Consistency and Query
Answering

Marcelo Arenas Leonid Libkin
U. of Toronto U. of Toronto

The Problem of Data Exchange

e Given: A source schema S, atarget schema 7" and a
specification > of the relationship between these schemas.

e Data exchange: Problem of finding an instance of 7", given an
Instance of S.

- Target instance should reflect the source data as accurately as possible,
given the constraints imposed by X and T'.

- It should be efficiently computable.

- It should allow one to evaluate queries on the target in a way that is
semantically consistent with the source data.

Data Exchange

Source schema

2\

Target schema

Data Exchange

TN
S

Source
database 2

e
~_

Source schema Target schema

\%

Data Exchange

>

Source
database

>

Source schema

N

>

Target
database

>

Target schema

Data Exchange

>

Source
database

>

Source schema

N

>

Target
database

>

Target schema

Data Exchange

>

Source
database

>

Source schema

Query over the target: ()

W

>

Target
database 7

>

Target schema

Answer to () In the target instance should represent the answer to ()
In the space of possible translations of the source instance.

Data Exchange in Relational Databases

e Data exchange has been extensively studied in the relational
world.

- It has also been implemented: Clio.

e Relational data exchange settings:
- Source and target schemas: Relational schemas.

- Relationship between source and target schemas:

e Semantics of data exchange has been precisely defined.

- Algorithms for materializing target instances and for answering queries
over the target have been developed.

Outline

@er®

i

XML data exchange settings.

- XML source-to-target dependencies.

Consistency of XML data exchange settings.

Query answering in XML data exchange.

Final remarks.

Outline

o+

XML data exchange settings.

- XML source-to-target dependencies.

Consistency of XML data exchange settings.

Query answering in XML data exchange.

Final remarks.

.
XML Documents

db
book book
@title author @title author
“Algebra” A “Real Analysis” A
@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

.
XML Documents

db
book book
@title author @title author
“Algebra” A “Real Analysis” A
@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”
db — book™
DTD : book — author™

author — ¢

.
XML Documents

db
book book
@title author @title author
“Algebra” A “Real Analysis” A
@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”
db — book™
DTD: book — author™ book — Qtitle
author — ¢ author — Qname, Qaff

XML Data Exchange Settings

e Source and target schemas are given by DTDs.

e To specify the relationship between the source and the target
schemas we use source-to-target dependencies.

To define these dependencies, we use tree patterns ...

Tree Patterns: Example

book

N

Qtitle author

! l
Qname
Y

Tree Patterns: Example

db
book book .
Qtitle author @title author
x l “Algebra” A
Qname @name @aff
Y “Hungerford” *“U. Washington”

Tree Patterns: Example

db
book .. book
Qtitle author @title author
T l “Real Analysis” A
Qname @name @aff
J “Royden” “Stanford”

Tree Patterns: Example

db
book .. book
Qtitle author @title author
T l “Real Analysis” A
Qname @name @aff
J “Royden” “Stanford”

Collect tuples (x,y): (Algebra, Hungerford), (Real Analysis, Royden)

Tree Patterns

e Tree patterns: XPath-like language.

- Example: book(Qtitle = x)[author(@Qname = y)]

e L anguage also includes wildcard _ (matching more than one
symbol) and descendant operator //.

XML Source-to-target Dependencies

e Source-to-target dependency (STD):

¢T(9_3‘» 2) — @S(fa y_),

where pg(z,) and ¢ (z, z) are tree-pattern formulas over
the source and target DTDs, resp.

e Example:
writer book
Qname work - Qtitle author
Qtitle Qyear Qname
€T z Y

10

o+

XML Data Exchange Settings

&

i

XML Data Exchange Setting: (Ds, D, XsT)
Dg: Source DTD.
D Target DTD.

>sT. Set of XML source-to-target dependencies.

Each constraint in g is of the form ¢ (Z, 2) (= vs(Z, 7).
- ps(z,7): Tree-pattern formula over Ds.

- 7 (Z, Z): Tree-pattern formula over D.

11

XML Data Exchange Problem

e Given asource tree 7', find a target tree 7’ such that (7", 7")
satisfies Yg.

- (T, T") satisfies ¢ (Z, z) - ps(Z, 7) if whenever T satisfies ps(a, b),
there is a tuple ¢ such that 7" satisfies ¢ (a, ¢).

- T" is called a solution for 7.

12

Example: Finding Solutions

Source db — book™
DTD: book — author™ book — Qtitle
author — ¢ author — Qname, Qaff
Target bib — writer™”
DTD: writer — work™ writer — Qname
work — ¢ work — Qtitle, Qyear
writer book
S Qname work - Qtitle author
> Y N v ¢
Qtitle Qyear @Qname
x z Y

13

o

Example: Finding Solutions

G

E

Let T" be our original tree:

db
book ook
@title author @title author
“Algebra” A “Real Analysis” A
@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

14

o+

Example: Finding Solutions

A solution for T
bib
writer writer
Qname work Qname work
“Hungerford” A “Royden” A
Q@title @year Q@title @yea
“Algebra” “141” “Real Analysis” “15”

15

Outline

e XML data exchange settings.

- XML source-to-target dependencies.

e Consistency of XML data exchange settings.

e Query answering in XML data exchange.

e Final remarks.

16

o+

Consistency of XML Data Exchange Settings

&

i

e An XML data exchange setting (Ds, D, ¥gT) can be
Inconsistent:

There are no 7' conforming to Dg and 7" conforming to Dt
such that (7', 7") satisfies X g.

e What is the complexity of checking whether a setting Is
consistent?

17

ad

Bad News: General Case

&

E

Theorem Checking if an XML data exchange setting is consistent
IS EXPTIME-complete.

Results on containment of XPath expressions as well as universality
of tree automata imply that EXPTIME-hardness is unavoidable.

18

Good News: Consistency for Commonly used DTDs

A large number of DTDs that occur in practice have rules of the form:
{ — él,...,ém,

where all the ¢;’s are distinct, and 7 is one of the following: ¢, or ¢*, or

¢t,or 7

Subsume non-relational data exchange handled by Clio.

Theorem For non-recursive DTDs that only have these rules, consistency
can be checked in time O ((|| Ds|| + || Dr||) - [|ZsT]?).

19

Outline

e XML data exchange settings.

- XML source-to-target dependencies.

e Consistency of XML data exchange settings.

e Query answering in XML data exchange.

e Final remarks.

20

Query Answering in XML Data Exchange

e Decision to make: What is our query language?

e \We start by considering a query language that produces tuples
of values.

21

Conjunctive Tree Queries

e Query language C7O// is defined by
Q = ¢ | QANQ | FzQ,

where ¢ ranges over tree-pattern formulas.

e By disallowing descendant // we obtain restriction C7O.

22

Example: Conjunctive Tree Query

.07 T
AT

List all pairs of authors that have written articles with the same title.

Q(r,y) =
writer writer
dz (@Qname work A Q@Qname work)
‘ l : l
@tatle @title
2 2

23

Certain Answers Semantics

e Given: A source tree T and a conjunctive tree query () over the
target.

e Answer to () should represent the answer to this query in the
space of solutions for 7T'.

e Certain answers semantics:

certan(Q,T) = f Q(T).

T’ 1sasolution for T

24

Computing Certain Answers

We study the following problem.

Given data exchange setting (Ds, D, ¥gT) and query Q:

PROBLEM: CERTAIN-ANSWERS(Q)).
INPUT: Tree 1" conforming to Dg and tuple a.
QUESTION: Isa € certain(Q,T)?

25

Computing Certain Answers: General Picture

Theorem For every XML data exchange setting and CTQ// -query
(), CERTAIN-ANSWERS((Q) Is In coNP.

Remark: In terms of the size of the document (data complexity).

Theorem There exist an XML data exchange setting and a
CTQ//-query Q such that CERTAIN-ANSWERS(Q) is coNP-hard.

We want to find tractable cases ...

26

Computing Certain Answers: Finding Tractable Cases

Theorem Suppose one of the following is allowed in tree patterns over
the target in STDs:

e descendant operator //, or
e wildcard _, or
e patterns that do not start at the root.
Then one can find source and target DTDs and a C7 Q-query (such that
CERTAIN-ANSWERS(() i1s coNP-complete.
Remark: Even if all the rules in the DTDs are of the form:
C— (] [4)

where all the ¢;’s are distinct.

27

Computing Certain Answers: Finding Tractable Cases

e To0 find tractable cases, we have to concentrate on
fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:
- no descendant relation //; and
- no wildcard _; and

- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

e Subsume non-relational data exchange handled by Clio.

From now on, all STDs are fully-specified.

28

. . e . %
Computing Certain Answers: Towards a Classification

Given a class C of regular expressions and a class Q of queries:

C is tractable for O if for every data exchange setting in which target
DTDs only use regular expressions from C and every Q-query (@,
CERTAIN-ANSWERS(Q) 1s in PTIME.

C is coNP-complete for O if there iIs a data exchange setting in which
target DTDs only use regular expressions from C and a Q-query () such
that CERTAIN-ANSWERS((Q) Is coNP-complete.

Remark (Ladner): If PTIME = NP, there are problems in coNP which are
neither tractable nor coNP-complete.

29

Computing Certain Answers: Towards a Classification

e Our classification is based on classes of regular expressions
used in target DTDs.

e \We only impose one restriction to these classes: They must
contain the simplest type of regular expressions.

e Such classes will be called admissible.

30

Computing Certain Answers: Dichotomy

Theorem

1) Every admissible class C of regular expressions is either tractable or
coNP-complete for CTQ// .

2) For every tractable class: Given a source tree I°, one can compute Iin
PTIME a solution 7™ for 1" such that

catan(Q,T) = remove_null_tuples(Q(T™)).

3) It is decidable whether the regular expressions used in a target DTD
belong to a tractable class.

31

A Tractable Class: Univocal Reqgular Expressions

o T
AR

e (. class of univocal regular expressions.

- Examples: (A|B)", A, BT, 0", D7, (A*|B"), (C,D)".
- Non-univocal: A, (B|C).

e Univocal regular expressions: Given a source tree 1', one can
compute in PTIME a solution 7™ for 1" such that

certan(Q,T) = remove_null_tuples(Q(T™)).

e Theorem Cy is tractable for C7Q//.

32

Non-tractable Classes

)1
z] -

1

-~
]

o]
AR

Is there any other tractable class of regular expressions?

Theorem Cy 1s maximal: If C is an admissible class of regular
expressions such that C & Cys, then C iIs coNP-complete for CTO-queries.

Dichotomy follows from this theorem and tractability of Cy;.

Theorem It is decidable whether a regular expression is univocal.

33

Outline

@er®

i

XML data exchange settings.

- XML source-to-target dependencies.

Consistency of XML data exchange settings.

Query answering in XML data exchange.

Final remarks.

34

ad

Final Remarks

&

E

e Dichotomy also holds for unions of conjunctive queries.

e Future work:

- We would like to consider XML query languages that produce XML
trees.

How do we define certain answers?

- The notion of reasonable solutions needs to be investigated further.

35

. . b
Tractable Case: Univocal Regular Expressions

e 1™ IS a canonical solution for T':

certan(Q,T) = remove_null_tuples(Q(T™)).

e \We compute 7™ in two steps:

- We use STDs to compute a canonical pre-solution cps(T") from T'.

- Then we use target DTD to compute T from cps(T).

36

Example: XML Data Exchange Setting

e Source DTD:

r — A* B*
A — ¢ A — @/
B — ¢ B — @/

e Target DTD:

r — (C,D)*
C — ¢ C — Qm
D — K
E — ¢ EFE — @Qn
® dYgT
rlC(@Qm =x)] = A(Qf=1x),

37

Example: Computing Canonical Pre-solution

38

Example: Computing Canonical Pre-solution

ol 4

x a;' “117 “211

38

Example: Computing Canonical Pre-solution

;/*:—A A B
il 4

:U Qj “11’ “217

38

Example: Computing Canonical Pre-solution

= g "
et

T T

l l

C c - A A

l l l l
Qm Qm @Y} @}
“1” T x “1”

38

Example: Computing Canonical Pre-solution

2
:

1

38

Example: Computing Canonical Pre-solution

2
:

1

A B
o
@/ @/

1 “211

38

Example: Computing Canonical Pre-solution

= g "
et

2
:

1

r
l
C - B A
l l i
Qm Q¢ Q/
T T 1

38

Example: Computing Canonical Pre-solution

= g "
et

2
:

1

r
l
C - B A
l l i
Qm Q¢ Q¢
T T 1

38

Example: Computing Canonical Pre-solution

= g "
et

2
i
l Lo P
|

38

Example: Computing Canonical Pre-solution

2
:

1

HQ«—%

Qm

38

Example: Computing Canonical Pre-solution

Canonical pre-solution:

C C
l l
Qm, Qm,

1 “2”

Not yet a solution: It does not conform to the target DTD.

39

Example: Computing Canonical Solution

40

Example: Computing Canonical Solution

o+

C C
| |
Qm Qm
L o
r — (C,D)"

40

Example: Computing Canonical Solution

o+

Qm
(14 1’7

r — (C,D)"

Qm
“2’7

40

Example: Computing Canonical Solution

C D C D
i i
Qm Qm
l “2’1

40

Example: Computing Canonical Solution

C D C D
i l i
Qm E Qm
l “2’1

40

Example: Computing Canonical Solution

C D C D
i l i
Qm E Qm
l “2’1

E — @Qn

40

Example: Computing Canonical Solution

-~ E=—0

Qn

E — @Qn

40

Example: Computing Canonical Solution

40

Example: Computing Canonical Solution

40

Example: Computing Canonical Solution

Qn

E — @Qn

40

-~ B=~—U0

Qn

E — @Qn

-~ E=—0

Qn

40

-~ B=~—0

Qn

- EB=~—0

Qn

40

